Les radars à synthèse d'ouverture (Synthetic Aperture Radar ou SAR) permettent de fournir des images à très haute résolution de la surface de la Terre. Les algorithmes de classification traditionnels se basent sur une hypothèse de bruit gaussien comme modèle de signal, qui est rapidement mise en défaut lorsque l'environnement devient inhomogène ou impulsionnel, comme c'est particulièrement le cas dans les images SAR polarimétriques haute résolution, notamment au niveau des zones urbaines. L'utilisation d'un modèle de bruit composé, appelé modèle SIRV, permet de mieux prendre en compte ces phénomènes et de représenter la réalité de manière plus adéquate. Cette thèse s'emploie alors à étudier l'application et l'impact de ce modèle pour la classification des images SAR polarimétriques afin d'améliorer l'interprétation des classifications au sens de la polarimétrie et à proposer des outils adaptés à ce nouveau modèle. En effet, il apparaît rapidement que les techniques classiques utilisent en réalité beaucoup plus l'information relative à la puissance de chaque pixel plutôt qu'à la polarimétrie pour la classification. Par ailleurs, les techniques de classification traditionnelles font régulièrement appel à la moyenne de matrices de covariance, calculée comme une moyenne arithmétique. Cependant, étant donnée la nature riemannienne de l'espace des matrices de covariance, cette définition n'est pas applicable et il est nécessaire d'employer une définition plus adaptée à cette structure riemannienne. Nous mettons en évidence l'intérêt d'utiliser un modèle de bruit non gaussien sur des données réelles et nous proposons plusieurs approches pour tirer parti de l'information polarimétrique qu'il apporte. L'apport de la géométrie de l'information pour le calcul de la moyenne est de même étudié, sur des données simulées mais également sur des données réelles acquises par l'ONERA. Enfin, une étude préliminaire d'une extension de ces travaux au cas de l'imagerie hyperspectrale est proposée, de par la proximité de ce type de données avec les données SAR polarimétriques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00983304 |
Date | 10 December 2013 |
Creators | Formont, Pierre |
Publisher | Université Rennes 1 |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds