Titre de l'écran-titre (visionné le 2 octobre 2023) / Dans cette thèse, le problème de Steklov est étudié. Tout d'abord, ce problème est étudié sur des variétés riemanniennes fermées soumises à des excisions tubulaires. Étant données $\varepsilon > 0$, une variété riemannienne fermée $M$ de dimension $m \geq 2$ et une sous-variété fermée $N \subset M$ de dimension $0 \leq n \leq m - 2$, une excision tubulaire consiste à enlever le voisinage tubulaire $N^{\varepsilon} := \{ p \in M : d_{g}(p, N) \leq \varepsilon \}$ de taille $\varepsilon$ autour de $N$ afin d'obtenir le domaine $\Omega_{\varepsilon} := M \setminus N^{\varepsilon}$. Le résultat principal de cette thèse concerne le comportement des valeurs propres de Steklov d'une variété riemannienne fermée $M$ soumise à un nombre fini $b \geq 1$ d'excisions tubulaires. Plus précisément, il est montré que les valeurs propres divergent lorsque la taille des voisinages tubulaires tend vers $0$. Cette construction donne un nouvel exemple de variétés ayant une grande première valeur propre et permet d'étudier des problèmes de type isopérimétrique, comme étudier la pertinence de certaines quantités géométriques présentes dans des bornes supérieures connues. On utilise la quasi-isométrie et la comparaison des valeurs propres de Steklov à des valeurs propres de problèmes mixtes -- le problème de Steklov-Neumann et le problème de Steklov-Dirichlet. La séparation de variables est ensuite utilisée pour calculer les valeurs propres de ces problèmes mixtes. Grâce à cette méthode, on obtient l'ordre et le taux de divergence des valeurs propres ordonnées d'indice supérieur à $b$. Finalement, les fonctions propres et les valeurs propres de Steklov pour des boules géodésiques des sphères et des espcaes hyperboliques sont calculées. Elles sont trouvées à l'aide de la méthode de séparation de variables. / In this thesis, the Steklov problem is studied. This problem is first studied on closed Riemannian manifolds subject to tubular excisions. Given $\varepsilon > 0$, a closed Riemannian manifold $M$ of dimension $m \geq 2$ and a closed submanifold $N \subset M$ of dimension $0 \leq n \leq m - 2$, a tubular excision consists of removing the tubular neighbourhood $N^{\varepsilon} := \{ p \in M : d_{g}(p, N) \leq \varepsilon \}$ of size $\varepsilon$ around $N$ to obtain the domain $\Omega_{\varepsilon} := M \setminus N^{\varepsilon}$. The principal result of this thesis concerns the behaviour of the Stekov eigenvalues of a closed Riemannian manifold $M$ subject to a finite number $b \geq 1$ of tubular excisions. More precisely, it is proven that the eigenvalues diverge to infinity when the size of the tubular neighbourhood tends to $0$. This construction gives a new example of manifolds with a large first eigenvalue and allows to study isoperimetric type problems, as well as study the importance of certain geometric quantities present in known upper bounds. We use quasi-isometry and the bracketing of Steklov eigenvalues which compares the Steklov eigenvalues with eigenvalues of mixed problems -- the Steklov-Neumann and the Steklov-Dirichlet problems. Then, the eigenvalues of those mixed problems are computed via the method of separation of variables. This method gives us the order and the rate of divergence of the ordered eigenvalues of index superior to "b". In a second part, the eigenfunctions and eigenvalues of geodesic balls in spheres and hyperbolic spaces are computed via the method of separation of variables.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/126144 |
Date | 23 October 2023 |
Creators | Brisson, Jade |
Contributors | Girouard, Alexandre |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (viii, 91 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0019 seconds