Return to search

Logique dans le Facteur Hyperfini: Géométrie de l'Interaction et Complexité

Cette thèse est une étude de la géométrie de l'interaction dans le facteur hyperfini (GdI5), introduite par Jean-Yves Girard, et de ses liens avec les constructions plus anciennes. Nous commençons par montrer comment obtenir des adjonctions purement géométriques comme une identité entre des ensembles de cycles apparaissant entre des graphes. Il est alors possible, en choisis- sant une fonction qui mesure les cycles, d'obtenir une adjonction numérique. Nous montrons ensuite comment construire, sur la base d'une adjonction numérique, une géométrie de l'interaction pour la logique linéaire multiplicative additive où les preuves sont interprétées par des graphes. Nous expliquons également comment cette construction permet de définir une sémantique dénotationnelle de MALL, et une notion de vérité. Nous étudions finalement une généralisation de ce cadre utilisant des outils de théorie de la mesure afin d'interpréter les exponentielles et le second ordre. Les constructions sur les graphes étant paramétrées par une fonction de mesure des cycles, nous entreprenons ensuite l'étude de deux cas particuliers. Le premier s'avère être une version combinatoire de la GdI5, et nous obtenons donc une interprétation géométrique de l'orthogonalité basée sur le déterminant de Fuglede-Kadison. Le second cas particulier est une version combinatoire des constructions plus anciennes de la géométrie de l'interaction, où l'orthogonalité est basée sur la nilpotence. Ceci permet donc de comprendre le lien entre les différentes versions de la géométrie de l'interaction, et d'en déduire que les deux adjonctions -- qui semblent à première vue si différentes -- sont des conséquences d'une même identité géométrique. Nous étudions ensuite la notion de vérité subjective. Nous commençons par considérer une version légè- rement modifiée de la GdI5 avec une notion de vérité dépendant du choix d'une sous-algèbre maximale commutative (masa). Nous montrons qu'il existe une correspondance entre la classification des masas introduite par Dixmier (regulière, semi-régulière, singulière) et les fragments de la logique linéaire que l'on peut interpréter dans cette géométrie de l'interaction. Nous étudions alors la vérité subjective de la GdI5, qui dépends du choix d'une représentation du facteur hyperfini de type II1, à la lumière de ce résultat. Finalement, nous détaillerons une proposition de Girard pour étudier les classes de complexité et dé- taillons la caractérisation obtenue par ce dernier de la classe de complexité co-NL, en montrant comment coder un problème complet pour cette classe à l'aide d'opérateurs.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00768403
Date13 November 2012
CreatorsSeiller, Thomas
PublisherAix-Marseille Université
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0012 seconds