La télédétection est une technique de plus en plus utilisée dans le domaine fluvial, et si des images acquises à haute, voire très haute altitude via des vecteurs aéroportés et satellites sont traditionnellement utilisées, l’imagerie in situ (ou « imagerie de terrain ») constitue un outil complémentaire qui présente de nombreux avantages (facilité de mise en place, coûts réduits, point de vue oblique, etc.). Les possibilités de programmer les prises de vue fixes à des fréquences relativement élevées (de quelques dixièmes de secondes dans le cas de vidéos, à quelques heures par exemple) mais aussi de pouvoir observer les évènements au moment où ils surviennent, est sans commune mesure avec les contraintes associées à l’acquisition de l’imagerie « classique » (dont les plus hautes fréquences s’élèvent à quelques jours). Cela permet de produire des jeux de données conséquents, dont l’analyse automatisée est nécessaire et constitue l’un des enjeux de cette thèse. Le traitement et l’analyse de jeux de données produits sur cinq sites test français et québécois ont permis de mieux évaluer les potentialités et les limites liées à l’utilisation de l’imagerie in situ dans le cadre de l’étude des milieux fluviaux. La définition des conditions optimales d’installation des capteurs en vue de l’acquisition des données constitue la première étape d’une démarche globale, présentée sous forme de modules optionnels, à prendre en compte selon les objectifs de l’étude. L’extraction de l’information radiométrique, puis le traitement statistique du signal ont été évalués dans plusieurs situations tests. La classification orientée-objet avec apprentissage supervisé des images a notamment été expérimentée via des random forests. L’exploitation des jeux de données repose principalement sur l’analyse de séries temporelles à haute fréquence. Cette thèse expose les forces et les faiblesses de cette approche et illustre des usages potentiels pour la compréhension des dynamiques fluviales. Ainsi, l’imagerie in situ est un très bon outil pour l’étude et l’analyse des cours d’eau, car elle permet la mesure de différents types de temporalités régissant les processus biophysiques observés. Cependant, il est nécessaire d’optimiser la qualité des images produites et notamment de limiter au maximum l’angle de vue du capteur, ou la variabilité des conditions de luminosité entre clichés, afin de produire des séries temporelles pleinement exploitables. / Remote sensing is more and more used in river sciences, mainly using satellite and airborne imagery. Ground imagery constitutes a complementary tool which presents numerous advantages for the study of rivers. For example, it is easy to set up; costs are limited; it allows an oblique angle; etc. It also presents the possibility to set up the triggering with very high frequency, ranging, for instance, from a few seconds to a few hours. The possibility to monitor events at the instant they occur makes ground imagery extremely advantageous compared to aerial or spatial imagery (whose highest acquisition frequency corresponds to a few days). Such frequencies produce huge datasets, which require automated analyses. This is one of the challenges addressed in this thesis. Processing and analysis of data acquired at five study sites located in France and Québec, Canada, facilitated the evaluation of ground imagery potentials, as well as its limitations with respect to the study of fluvial systems. The identification of optimal conditions to set up the cameras and to acquire images is the first step of a global approach, presented as a chain of optional modules. Each one is to be taken into account according to the objectives of the study. The extraction of radiometric information and the subsequent statistical analysis of the signal were tested in several situations. In particular, random forests were applied, as a supervised object-oriented classification method. The datasets were principally exploited using high frequency time series analyses, which allowed demonstrating strengths and weaknesses of this approach, as well as some potential applications. Ground imagery is a powerful tool to monitor fluvial systems, as it facilitates the definition of various kinds of time characteristics linked with fluvial biophysical processes. However, it is necessary to optimize the quality of the data produced. In particular, it is necessary to minimize the acquisition angle and to limit the variability of luminosity conditions between shots in order to acquire fully exploitable datasets.
Identifer | oai:union.ndltd.org:theses.fr/2017LYSE2056 |
Date | 10 July 2017 |
Creators | Benacchio, Véronique |
Contributors | Lyon, Piégay, Hervé, Buffin-Bélanger, Thomas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds