Return to search

Géons topológicos em uma teoria de Gauge discreta / Topological Geons in a Discrete Gauge Theory

Géons topológicos podem ser vistos como um tipo de excitação localizada na topologia espacial. Nesta dissertação, estudamos um modelo físico simples, dado por uma teoria de Yang-Mills-Higgs com simetria de gauge descrita por um grupo de Lie compacto G, e com quebra espontânea de simetria para um subgrupo finito H G. Esta teoria é definida em um espaço-tempo de (2 + 1)d com topologia da forma x IR, onde descreve o plano com um único géon. Estudamos mais especificamente o setor de baixas energias dessa teoria, deduzindo o espaço de configuração clássico e quantizando-o. A quantização é feita identificando certa álgebra que descreve matematicamente o sistema, analisando com detalhes sua estrutura e buscando suas representações irredutíveis. Cada representação é então interpretada como um determinado setor de um géon da teoria. Em outras palavras, cada uma destas representações irredutíveis descreve um tipo de géon diferente. Em seguida, mostramos como estender essa descrição para um número N qualquer de géons. A teoria aqui desenvolvida pode ser vista como um \"toy model\" para o estudo das consequências de se ter uma topologia espacial não-trivial, e em particular, o estudo das propriedades físicas de géons. / Topological geons can be viewed as a sort of localized excitations in spatial topology. In this dissertation, we study a simple physical model, given by a Yang-Mills-Higgs theory with a gauge symmetry described by a compact Lie group G, spontaneously broken down to a finite subgroup H C G. We shall consider this theory to be defined on a (2 + 1)d spacetime with topology of the form E x IR, where describes a plane with a single geon. More specifically, we investigate the low energy sector of this theory, obtain its classical configuration space and quantize it. Quantization is accomplished by identifying a certain algebra, which mathematically describes the system, analyzing its structure in detail and obtaining its irreducible representations. Each such representation is then interpreted as an specific geonic sector of the theory. In other words, each one of the irreducible representations describes a distinct geon type. Moreover, we show how the above description can be extended to any number N of geons. The theory developed here may be viewed as a toy model for studying the consequences of non-trivial spatial topology, and in particular the study of the physical properties of geons.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-04122013-132508
Date21 June 2001
CreatorsIvan Pontual Costa e Silva
ContributorsPaulo Teotonio Sobrinho, Elcio Abdalla, George Emanuel Avraam Matsas, Paolo Piccione, Alberto Vazquez Saa
PublisherUniversidade de São Paulo, Física, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds