Adenosine receptors that belong to the rhodopsin-like G protein-coupled receptors (GPCRs) are involved in a lot of regulatory processes and are widely distributed throughout the body which makes them an attractive target for drugs. However, pharmacological knowledge of these receptors is still limited. A big advance regarding the structural knowledge of adenosine receptors was the development of the first crystal structure of the adenosine A2A receptor in 2008. The crystal structure revealed the amino acids that form the ligand binding pocket of the receptor and depicted the endpoint of receptor movement in the ligand binding process. Within the scope of this work two members of the adenosine receptor family were investigated, namely the adenosine A1 and the A2A receptor (A1R, A2AR). A1R was generated on base of the previously developed A2AR. Receptors were tagged with fluorophores, with the cyan fluorescent protein (CFP) at the C-terminal end of receptor and the Fluorescein Arsenical Hairpin binder (FlAsH) binding sequence within the third intracellular loop of receptors. Resulting fluorescent receptor sensors
A1 Fl3 CFP and A2A Fl3 CFP were investigated with help of Fluorescence Resonance Energy Transfer (FRET) measurements within living cells. FRET experiments enable the examination of alteration in the distance of two fluorophores and thus the observation of receptor dynamical movements.
For comparison of A1R and A2AR regarding receptor dynamical movement upon ligand binding, fluorescent receptor sensors A1 Fl3 CFP and A2A Fl3 CFP were superfused with various ligands and the outcomes of FRET experiments were compared regarding signal height of FRET ratio evoked by the distinct ligand that is correlated to the conformational change of receptor upon ligand binding. Beside the different direction of FRET ratio upon ligand binding at A1R and A2AR sensor, there were differences observable when signal height and association and dissociation kinetics of the various ligands investigated were compared to each other. Differences between the adenosine receptor subtypes were especially remarkable for the A1R subtype selective agonist CPA and the A2AR subtype selective agonist CGS 21680. Another part of the project was to investigate the influence of single amino acids in the ligand binding process within the fluorescent A1R sensor. Amino acid positions were derived from the crystal structure of the A2AR forming the ligand binding pocket and these amino acids were mutated in the A1R structure. Investigation of the A1R sensor and its mutants regarding confocal analysis showed involvement
of some amino acids in receptor localization. When these amino acids were mutated receptors were not expressed in the plasma membrane of cells. Some amino acids investigated were found to be involved in the ligand binding process in general whereas other amino acids were found to have an influence on the binding of distinct structural groups of the ligands investigated. In a further step, A1R and A2AR were N-terminally tagged with SNAP or CLIP which allowed to label receptor sensors with multiple fluorophores. With this technique receptor distribution in cells could be investigated with help of confocal analysis. Furthermore, ligand binding with fluorescent adenosine receptor ligands and their competition with help of a non-fluorescent antagonist was examined at the SNAP tagged A1R and A2AR. Finally the previously developed receptor sensors were combined to the triple labeled receptor sensors SNAP A1 Fl3 CFP and SNAP A2A Fl3 CFP which were functional regarding FRET experiments and plasma membrane expression was confirmed via confocal analysis. In the future, with the help of this technique, interaction between fluorescent ligand and SNAP tagged receptor can be monitored simultaneously with the receptor movement that is indicated by the distance alteration between FlAsH and CFP. This can
lead to a better understanding of receptor function and its dynamical movement upon ligand binding which may contribute to the development of new and more specific drugs for the A1R and A2AR in the future. / Adenosin Rezeptoren, die zur Gruppe der Rhodopsin-ähnlichen G Protein-gekoppelten Rezeptoren (GPCRs) gehören, sind in eine Vielzahl regulatorischer Prozesse eingebunden und weit im Körper verbreitet. Das macht sie zu einer interessanten Zielstruktur für Arzneistoffe. Das Wissen über die Struktur der Adenosin Rezeptoren ist jedoch noch begrenzt. Ein großer Fortschritt zu mehr strukturellem Wissen war die Entwicklung der ersten Kristallstruktur des Adenosin A2A Rezeptors im Jahr 2008. Mit der Kristallstruktur wurden die Aminosäuren bekannt, die die Ligandenbindetasche dieses Rezeptors formen. Zudem gab die Kristallstruktur Einblick in den Endpunkt der dynamischen Rezeptorbewegung nach Ligandenbindung. Im Rahmen der hier vorgestellten Arbeit wurden zwei Mitglieder der Adenosin Rezeptor Familie, der Adenosin A1 Rezeptor und der Adenosin A2A Rezeptor (A1R, A2AR), genauer untersucht. Der A1R wurde auf Basis des vor kurzem veröffentlichten A2AR entwickelt. Die Rezeptoren wurden mit Fluorophoren versehen, zum einen mit dem cyan fluoreszierenden Protein (CFP) am C-Terminus des Rezeptors und zum anderen mit der Bindesequenz des kleinen Fluorophors "Fluorescein Arsenical Hairpin binder" (FlAsH) in der dritten intrazellulären Schleife des Rezeptors. Die daraus resultierenden Rezeptorsensoren A1 Fl3 CFP und A2A Fl3 CFP wurden mit Hilfe des Fluoreszenz Resonanz Energie Transfers (FRET) in lebenden Zellen erforscht. FRET Messungen ermöglichen es, eine Änderung der Distanz zwischen
den beiden Fluorophoren und damit Rezeptorbewegungen zu untersuchen. Um A1R und A2AR bezüglich dynamischer Rezeptorbewegungen nach Ligandenbindung vergleichen zu können, wurden die fluoreszierenden Rezeptorsensoren A1 Fl3 CFP und A2A Fl3 CFP mit verschiedenen Liganden umspült. Die Ergebnisse der FRET Messungen bezüglich ihrer Höhe des FRET Ratio wurden verglichen, welche
mit der Konformationsänderung des Rezeptors nach Ligandenbindung zusammenhängt. Neben der unterschiedlichen Richtung des FRET Ratio nach Ligandenbindung am A1R und A2AR Sensor waren Unterschiede bezüglich der Signalhöhe und der Bindungs- und Dissoziationskinetiken feststellbar, wenn die verschiedenen Liganden miteinander verglichen wurden. Unterschiede zwischen den Adenosin Rezeptor Subtypen waren speziell für den A1R subtypselektiven Agonist CPA und für den
A2AR subtypselektiven Agonist CGS 21680 feststellbar. Einen weiteren Punkt in diesem Projekt stellte die Erforschung des Einflusses, den einzelne Aminosäuren im fluoreszierenden A1R Sensor auf den Prozess der Ligandenbindung haben, dar. Die Position der Aminosäuren wurde der Kristallstruktur des A2AR entnommen und entsprechende Aminosäuren im A1R mutiert. Die konfokalmikroskopische Analyse des A1R Sensors und seiner Mutanten ergab, dass einige Aminosäuren direkt an der zellulären Expression des Rezeptors beteiligt waren. Wurden diese Aminosäuren mutiert, wurde der Rezeptor nicht in der Plasmamembran der Zellen exprimiert. Einige Aminosäuren die untersucht wurden,hatten einen generellen Einfluss auf die Bindung der Liganden, andere Aminosäuren hatten mehr Einfluss auf die Bindung bestimmter struktureller Gruppen der untersuchten Liganden. In einem weiteren Schritt wurden A1R und A2AR am N-terminalen Rezeptorende
mit SNAP oder CLIP versehen, was eine Markierung der Rezeptoren mit einer Vielzahl an Fluorophoren erlaubt. Mit Hilfe dieser Technik konnte die Verteilung der Rezeptoren in der Zelle mit konfokaler Mikroskopie untersucht werden. Des Weiteren wurde die Bindung von fluoreszierenden Adenosin Rezeptor Liganden und deren Verdrängung mit einem nicht-fluoreszierenden Adenosin Rezeptor Antagonist erforscht. Am Ende des Projekts wurden die zuvor beschriebenen fluoreszierenden Rezeptorsensoren zu dreifach fluorophormarkierten Rezeptorsensoren kombiniert, was zu den Sensoren SNAP A1 Fl3 CFP und SNAP A2A Fl3 CFP führte. Beide Rezeptorsensoren waren funktionell bezüglich FRET Experimenten und der Expression in der
Plasmamembran der Zellen. In Zukunft können mit dieser Methode gleichzeitig die Bindung von fluoreszierenden Liganden am SNAP-markierten Rezeptor, so wie die Rezeptorbewegung beobachtet
werden, die durch eine Distanzänderung zwischen CFP und FlAsH angezeigt wird. Das kann zu einem besseren Verständnis der Rezeptorfunktion und der dynamischen Rezeptorbewegung nach Ligandenbindung führen, die in Zukunft zur Entwicklung spezifischerer Wirkstoffe am A1R und A2AR beitragen könnte.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:12546 |
Date | January 2015 |
Creators | Stumpf, Anette D. |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0033 seconds