Return to search

Expression of G-protein Coupled Receptors in Young and Mature Thrombocytes and Knockdown of Gpr18 in Zebrafish

In this study, a novel method based on biotinylated antibodies and streptavidin coated magnetic beads was used to separate the thrombocyte subpopulations from zebrafish whole blood. DiI-C18, a lipophilic dye, labels only young thrombocytes when used at low concentrations. Commercially available biotinylated anti-Cy3 antibody was used to label the chromophore of DiI-C18 on the young thrombocytes and streptavidin coated magnetic beads were added subsequently, to separate young thrombocytes. The remaining blood cells were probed with custom-made biotinylated anti-GPIIb antibody and streptavidin magnetic beads to separate them from other cells. Further, thrombocytes are equivalents of mammalian platelets. Platelets play a crucial role in thrombus formation. The G-protein coupled receptors (GPCRs) present on the platelet surface are involved during platelet activation and aggregation processes. So, thrombocytes were studied for the presence of GPCRs. The GPCR mRNA transcripts expressed in the young and mature thrombocytes were subjected to densitometry analysis and pixel intensities of the bands were compared using one way ANOVA. This analysis did not show significant differences between the young and mature GPCR mRNA transcripts but identified a novel GPCR, GPR18 that was not reported in platelets earlier. To study the function of this GPCR, it was knocked down using GPR18 specific antisense morpholino and vivo morpholino. The immunofluorescence experiment indicated the presence of GPR18 on thrombocytes. The results of the assays, such as, time to occlusion (TTO) and time to aggregation (TTA) in response to N-arachidonyl glycine (NAG) as an agonist, showed prolongation of time in GPR18 larval and adult morphants respectively, suggesting that GPR18 plays a role in thrombus formation in zebrafish. In conclusion, our results indicate that GPR18 may be present in zebrafish thrombocytes, it may be involved in thrombus formation and that NAG may be an agonist at GPR18 on thrombocytes.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc271881
Date05 1900
CreatorsPotbhare, Vrinda Nikhil
ContributorsJagadeeswaran, Pudur, O'Donovan, Gerard, Dzialowski, Edward, Fuchs, Jannon, Beck, Brian, Naik, Ulhas
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Potbhare, Vrinda Nikhil, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0019 seconds