Return to search

Human-robot spatial interaction using probabilistic qualitative representations

Current human-aware navigation approaches use a predominantly metric representation of the interaction which makes them susceptible to changes in the environment. In order to accomplish reliable navigation in ever-changing human populated environments, the presented work aims to abstract from the underlying metric representation by using Qualitative Spatial Relations (QSR), namely the Qualitative Trajectory Calculus (QTC), for Human-Robot Spatial Interaction (HRSI). So far, this form of representing HRSI has been used to analyse different types of interactions online. This work extends this representation to be able to classify the interaction type online using incrementally updated QTC state chains, create a belief about the state of the world, and transform this high-level descriptor into low-level movement commands. By using QSRs the system becomes invariant to change in the environment, which is essential for any form of long-term deployment of a robot, but most importantly also allows the transfer of knowledge between similar encounters in different environments to facilitate interaction learning. To create a robust qualitative representation of the interaction, the essence of the movement of the human in relation to the robot and vice-versa is encoded in two new variants of QTC especially designed for HRSI and evaluated in several user studies. To enable interaction learning and facilitate reasoning, they are employed in a probabilistic framework using Hidden Markov Models (HMMs) for online classiffication and evaluation of their appropriateness for the task of human-aware navigation. In order to create a system for an autonomous robot, a perception pipeline for the detection and tracking of humans in the vicinity of the robot is described which serves as an enabling technology to create incrementally updated QTC state chains in real-time using the robot's sensors. Using this framework, the abstraction and generalisability of the QTC based framework is tested by using data from a different study for the classiffication of automatically generated state chains which shows the benefits of using such a highlevel description language. The detriment of using qualitative states to encode interaction is the severe loss of information that would be necessary to generate behaviour from it. To overcome this issue, so-called Velocity Costmaps are introduced which restrict the sampling space of a reactive local planner to only allow the generation of trajectories that correspond to the desired QTC state. This results in a exible and agile behaviour I generation that is able to produce inherently safe paths. In order to classify the current interaction type online and predict the current state for action selection, the HMMs are evolved into a particle filter especially designed to work with QSRs of any kind. This online belief generation is the basis for a exible action selection process that is based on data acquired using Learning from Demonstration (LfD) to encode human judgement into the used model. Thereby, the generated behaviour is not only sociable but also legible and ensures a high experienced comfort as shown in the experiments conducted. LfD itself is a rather underused approach when it comes to human-aware navigation but is facilitated by the qualitative model and allows exploitation of expert knowledge for model generation. Hence, the presented work bridges the gap between the speed and exibility of a sampling based reactive approach by using the particle filter and fast action selection, and the legibility of deliberative planners by using high-level information based on expert knowledge about the unfolding of an interaction.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:724452
Date January 2016
CreatorsDondrup, Christian
ContributorsHanheide, Marc ; Duckett, Tom
PublisherUniversity of Lincoln
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://eprints.lincoln.ac.uk/28665/

Page generated in 0.0018 seconds