Glycosaminoglycans (GAGs), a large family of complex, unbranched polysaccharides, display a variety of essential physiological functions. The structural complexity of GAGs greatly impedes their availability, thus making it difficult to understand the biological roles of GAGs and structure-property relationships. A method that can access GAGs and their analogs with defined structure at relatively large scales will facilitate our understandings of GAG biological roles and biosynthesis modulation.
Cellulose is an abundant and renewable natural polymer. Applications of cellulose and cellulose derivatives have drawn increasing attention in recent decades. Chemical modification is an efficient method to append new functionalities to the cellulose backbones. This dissertation describes chemical modification of cellulose and cellulose derivatives to prepare unsulfated and sulfated GAG analogs. Through these studies, we have also discovered novel chemical reactions to modify cellulose. Systematic study of these novel chemistries is also included in this dissertation.
We first demonstrated our preparation of two unsulfated GAG analogs by chemical modification of a commercially available cellulose ester. Cellulose acetate was first brominated, followed by azide displacement to introduce azides as the GAG amine precursors. The resulting 6-N3 cellulose acetate was then saponified to liberate 6-OH groups, followed by subsequent (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation of the liberated primary hydroxyl groups to carboxyl groups. Finally, the azides were reduced to amines using a novel reducing reagent, dithiothreitol (DTT). Alternatively, another process utilized thioacetic acid to reduce azides to a mixture of amine and acetamido groups.
Through pursuing these GAG analogs, we applied novel azide reductions by DTT and thioacetic acid that are new to polysaccharide chemistry. We systematically investigated the scope of DTT and thioacetic acid azide reduction chemistry under different conditions, substrates, and functional group tolerance. Selective chlorination is another interesting reaction we discovered in functionalization of cellulose esters. We applied this chlorination reaction to hydroxyethyl cellulose (HEC). We then utilized the chlorinated HEC as a substrate for displacement reactions with different types of model nucleophiles to demonstrate the scope of its utility.
Overall, we have designed a novel synthetic route to two unsulfated GAG analogs by chemical modification of cellulose acetate. Through exploration of GAG analogs synthesis, we discovered novel methods to modify polysaccharide and polysaccharide derivatives, including azide reduction chemistry and selective chlorination reactions. Successful synthesis of various types of GAG analogs will have great potential biomedical applications and facilitate structure-activity relationship studies. / Doctor of Philosophy / Polysaccharides are long chains of natural sugars. Glycosaminoglycans (GAGs) are an important class of polysaccharides which have complicated chemical structures and play critical roles in many biological processes, including regulation of cell growth, promotion of cell adhesion, anticoagulation, and wound repair. Current methods to obtain these GAGs and GAG analogs are expensive, lengthy, and limited in capability. Novel methods to access these GAGs and their analogs would be promising and would facilitate understanding of biological activities of GAGs.
Cellulose is an abundant polymer on earth and provides structural reinforcement in plant cell walls. Cellulose can be further chemically modified to tailor its physiochemical properties. Cellulose and cellulose derivatives have been widely used in many industries for various applications, such as textiles, plastic films, automotive coatings, and drug formulation.
This dissertation focuses on modifying inexpensive, abundant cellulose and its derivatives to GAGs and GAG analogs. We start from the simple plant polysaccharide cellulose and obtain structurally complicated analogs of animal-sourced GAGs and GAG analogs. We reached our goal by designing a carefully crafted synthetic route, finally successfully obtaining two types of novel GAG analogs. During this process, we discovered two useful chemical reactions. We systematically investigated these chemical reactions and demonstrated their utility for polysaccharide chemical modification. These successful chemical syntheses of GAGs and their analogs will accelerate our understanding of their natural functions and have potential biomedical applications. The novel chemical methods we discovered will be helpful in chemical modification of polysaccharides.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/104865 |
Date | 06 March 2020 |
Creators | Gao, Chengzhe |
Contributors | Chemistry, Edgar, Kevin J., Esker, Alan R., Turner, S. Richard, Frazier, Charles E. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0023 seconds