Cette thèse traite la contribution des méthodes d'ondelettes sur la modélisation des séries temporelles économiques et financières et se compose de deux parties: une partie univariée et une partie multivariée. Dans la première partie (chapitres 2 et 3), nous adoptons le cas univarié. Premièrement, nous examinons la classe des processus longue mémoire non-stationnaires. Une étude de simulation a été effectuée afin de comparer la performance de certaines méthodes d'estimation semi-paramétrique du paramètre d'intégration fractionnaire. Nous examinons aussi la mémoire longue dans la volatilité en utilisant des modèles FIGARCH pour les données de l'énergie. Les résultats montrent que la méthode d'estimation Exact Local Whittle de Shimotsu et Phillips [2005] est la meilleure méthode de détection de longue mémoire et la volatilité du pétrole exhibe une forte évidence de phénomène de mémoire longue. Ensuite, nous analysons le risque de marché des séries de rendements univariées de marchés boursier, qui est mesurée par le risque systématique (bêta) à différents horizons temporels. Les résultats montrent que le Bêta n'est pas stable, en raison de multi-trading stratégies des investisseurs. Les résultats basés sur l'analyse montrent que le risque mesuré par la VaR est plus concentrée aux plus hautes fréquences. La deuxième partie (chapitres 4 et 5) traite l'estimation de la variance et la corrélation conditionnelle des séries temporelles multivariées. Nous considérons deux classes de séries temporelles: les séries temporelles stationnaires (rendements) et les séries temporelles non-stationnaires (séries en niveaux). / This thesis deals with the contribution of wavelet methods on modeling economic and financial time series and consists of two parts: the univariate time series and multivariate time series. In the first part (chapters 2 and 3), we adopt univariate case. First, we examine the class of non-stationary long memory processes. A simulation study is carried out in order to compare the performance of some semi-parametric estimation methods for fractional differencing parameter. We also examine the long memory in volatility using FIGARCH models to model energy data. Results show that the Exact local Whittle estimation method of Shimotsu and Phillips [2005] is the better one and the oil volatility exhibit strong evidence of long memory. Next, we analyze the market risk of univariate stock market returns which is measured by systematic risk (beta) at different time horizons. Results show that beta is not stable, due to multi-trading strategies of investors. Results based on VaR analysis show that risk is more concentrated at higher frequency. The second part (chapters 4 and 5) deals with estimation of the conditional variance and correlation of multivariate time series. We consider two classes of time series: the stationary time series (returns) and the non-stationary time series (levels). We develop a novel approach, which combines wavelet multi-resolution analysis and multivariate GARCH models, i.e. the wavelet-based multivariate GARCH approach. However, to evaluate the volatility forecasts we compare the performance of several multivariate models using some criteria, such as loss functions, VaR estimation and hedging strategies.
Identifer | oai:union.ndltd.org:theses.fr/2012AIXM1083 |
Date | 23 October 2012 |
Creators | Khalfaoui, Rabeh |
Contributors | Aix-Marseille, Boutahar, Mohamed |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds