Financial market integration, in particular, portfolio allocations from advanced economies to South African markets, continues to strengthen volatility linkages and quicken volatility transmissions between participating markets. Largely as a result, South African portfolios are net recipients of returns and volatility shocks emanating from major world markets. In light of these, and other, sources of risk, this dissertation proposes a methodology to improve risk management systems in funds by building a contemporary asset allocation framework that offers practitioners an opportunity to explicitly model combinations of hypothesised global risks and the effects on their investments. The framework models portfolio return variables and their key risk driver variables separately and then joins them to model their combined dependence structure. The separate modelling of univariate and multivariate (MV) components admits the benefit of capturing the data generating processes with improved accuracy. Univariate variables were modelled using ARMA-GARCH-family structures paired with a variety of skewed and leptokurtic conditional distributions. Model residuals were fit using the Peaks-over-Threshold method from Extreme Value Theory for the tails and a non-parametric, kernel density for the interior, forming a completed semi-parametric distribution (SPD) for each variable. Asset and risk factor returns were then combined and their dependence structure jointly modelled with a MV Student t copula. Finally, the SPD margins and Student t copula were used to construct a MV meta t distribution. Monte Carlo simulations were generated from the fitted MV meta t distribution on which an out-of-sample test was conducted. The 2014-to-2015 horizon served to proxy as an out-of-sample, forward-looking scenario for a set of key risk factors against which a hypothetical, diversified portfolio was optimised. Traditional mean-variance and contemporary mean-CVaR optimisation techniques were used and their results compared. As an addendum, performance over the in-sample 2008 financial crisis was reported. The final Objective (7) addressed management and conservation strategies for the NMBM. The NMBM wetland database that was produced during this research is currently being used by the Municipality and will be added to the latest National Wetland Map. From the database, and tools developed in this research, approximately 90 wetlands have been identified as being highly vulnerable due to anthropogenic and environmental factors (Chapter 6) and should be earmarked as key conservation priority areas. Based on field experience and data collected, this study has also made conservation and rehabilitation recommendations for eight locations. Recommendations are also provided for six more wetland systems (or regions) that should be prioritised for further research, as these systems lack fundamental information on where the threat of anthropogenic activities affecting them is greatest. This study has made a significant contribution to understanding the underlying geomorphological processes in depressions, seeps and wetland flats. The desktop mapping component of this study illustrated the dominance of wetlands in the wetter parts of the Municipality. Perched wetland systems were identified in the field, on shallow bedrock, calcrete or clay. The prevalence of these perches in depressions, seeps and wetland flats also highlighted the importance of rainfall in driving wetland formation, by allowing water to pool on these perches, in the NMBM. These perches are likely to be a key factor in the high number of small, ephemeral wetlands that were observed in the study area, compared to other semi-arid regions. Therefore, this research highlights the value of multi-faceted and multi-scalar wetland research and how similar approaches should be used in future research methods has been highlighted. The approach used, along with the tools/methods developed in this study have facilitated the establishment of priority areas for conservation and management within the NMBM. Furthermore, the research approach has revealed emergent wetland properties that are only apparent when looking at different spatial scales. This research has highlighted the complex biological and geomorphological interactions between wetlands that operate over various spatial and temporal scales. As such, wetland management should occur across a wetland complex, rather than individual sites, to account for these multi-scalar influences.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:26961 |
Date | January 2016 |
Creators | McEwan, Peter Gareth Fredric |
Publisher | Nelson Mandela Metropolitan University, Faculty of Science |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Masters, MSc |
Format | x, 139 leaves, pdf |
Rights | Nelson Mandela Metropolitan University |
Page generated in 0.0066 seconds