Made available in DSpace on 2015-03-26T13:42:32Z (GMT). No. of bitstreams: 1
texto completo.pdf: 1270776 bytes, checksum: 45ceec810d57392774ec214a30c1e3a3 (MD5)
Previous issue date: 2014-02-26 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / The correct classification of individuals has a top importance for the genetic variability preservation as well as to maximize gains. The multivariate statistical techniques commonly used in these situations are the Fisher and Anderson discriminant functions, allowing to allocate an initially unknown individual in a probably g population or predefined groups. However, for higher levels of similarity such as backcross populations these methods has proved to be inefficient. Currently, much has been Said about a new paradigm of computing, artificial neural networks, which can be used to solve many statistical problems as similar subjects grouping, time-series forecasting and in particular, the classification problems. The aim of this study was to conduct a comparative study between the Fisher and Anderson discriminant functions and artificial neural networks through the number of incorrect classifications of individuals known to belong to different simulated backcross with increasing levels of populations similarity. The dissimilarity, measured by Mahalanobis distance, was a concept of fundamental importance in the use of discrimination techniques, due the quantification of how much populations were divergent. Data collection was done through simulation using the software Genes. Each population generated was characterized by a set of elements measured by characteristics of a continuous distribution. The relations of relatives and hierarchical structuring were established considering genetically divergent populations, F1 hybrid and five generations of backcrossing in relation to each of the relatives, establishing measures of effectiveness of the tested methodologies. The phenotypic data of populations were used to establish the Fisher and Anderson discriminant function and the calculation of the apparent error rate (AER), which measures the number of incorrect classifications. The ERA Estimations were compared with those obtained by means of neural networks. The artificial neural network is shown as a promising technique to solve classification problems, once it had a number of incorrect individuals classifications smaller than the data obtained by the discriminant functions. / A correta classificação de indivíduos é de extrema importância para fins de preservação da variabilidade genética existente bem como para a maximização dos ganhos. As técnicas de estatística multivariada comumente utilizada nessas situações são as funções discriminantes de Fisher e de Anderson, que permitem alocar um indivíduo inicialmente desconhecido em uma das g populações prováveis ou grupos pré-definidos. Entretanto, para altos níveis de similaridade como é o caso de populações de retrocruzamentos esses métodos tem se mostrado pouco eficientes. Atualmente, muito se fala de um novo paradigma de computação, as redes neurais artificiais, que podem ser utilizadas para resolver diversos problemas da Estatística, como agrupamento de indivíduos similares, previsão de séries temporais e em especial, os problemas de classificação. O objetivo desse trabalho foi realizar um estudo comparativo entre as funções discriminantes de Fisher e de Anderson e as redes neurais artificiais quanto ao número de classificações incorretas de indivíduos sabidamente pertencentes a diferentes populações simuladas de retrocruzamento, com crescentes níveis de similaridade. A dissimilaridade, medida pela distância de Mahalanobis, foi um conceito de fundamental importância na utilização das técnicas de discriminação, pois quantificou o quanto as populações eram divergentes. A obtenção dos dados foi feita através de simulação utilizando o programa computacional Genes. Cada população, gerada por simulação, foi caracterizada por um conjunto de elementos mensurados por características de natureza contínua. Foram geradas considerados 50 locos independentes, cada qual com dois alelos. As relações de parentescos e a estruturação hierárquica foram estabelecidas considerando populações genitoras geneticamente divergentes, híbrido F1 e cinco gerações de retrocruzamento em relação a cada um dos genitores, permitindo estabelecer parâmetros de eficácia das metodologias testadas. Os dados fenotípicos das populações foram utilizados para estabelecimento da função discriminante de Fisher e Anderson e para o cálculo da taxa de erro aparente (TEA), que mede o xi número de classificações incorretas. As estimativas de TEA foram comparadas com as obtida por meio das Redes Neurais Artificiais. As redes neurais artificiais mostraram-se uma técnica promissora no que diz respeito a problemas de classificação, uma vez que apresentaram um número de classificações incorretas de indivíduos menor que os dados obtidos pelas funções discriminantes.
Identifer | oai:union.ndltd.org:IBICT/oai:localhost:123456789/4801 |
Date | 26 February 2014 |
Creators | Sant'anna, Isabela de Castro |
Contributors | Bhering, Leonardo Lopes, Carneiro, Pedro Crescêncio Souza, Cruz, Cosme Damião, Nascimento, Moysés |
Publisher | Universidade Federal de Viçosa, Mestrado em Genética e Melhoramento, UFV, BR, Genética animal; Genética molecular e de microrganismos; Genética quantitativa; Genética vegetal; Me |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFV, instname:Universidade Federal de Viçosa, instacron:UFV |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0031 seconds