Return to search

Ternary combination concretes using GGBS, fly ash & limestone : strength, permeation & durability properties

With the pressure on the construction industry to lower CO2 emissions it has become increasingly important to utilise materials that supplement Portland cement (CEM I) in concrete. These include additions such as ground granulated blast-furnace slag (GGBS) and fly ash, which have found greater use due to the benefits they provide to many properties of the material (in addition to environmental impact). While studies have investigated these materials in binary blends with CEM I, little work has examined the effect of combining materials in ternary blend concretes. A wide-ranging study was, therefore, set up to examine this for the range of more commonly available additions. This thesis reports on research carried out to investigate the effects of cement combinations based on CEM I / GGBS with either fly ash or limestone. The experimental programme investigated these materials in both paste and concrete and covered fresh properties, compressive strength, permeation and durability properties (using standard water curing for the latter three) and considered, for the hardened properties, how these may be balanced with environmental cost. The mixes covered a range of w/c ratios (0.35. 0.50 and 0.65), which was the main basis of comparison, and combinations of CEM I with GGBS (at levels of 35%, 55% and 75%), and fly ash and LS part-replacing this (at levels of 10 to 20 % and 10 to 35% respectively), after consideration of the relevant standards and related research. The initial phase of the study examined the characteristics of the materials, which indicated that they conformed to appropriate standards and were typical of those used in the application. Studies with cement paste (0.35 and 0.50 w/c ratio) indicated that there were reductions in water demand with the use of addition materials (binary and ternary) compared to CEM I. The setting times of the cement pastes were also affected, generally increasing with GGBS level for the binary mixes, although the effect was influenced by w/c ratio. Whilst fly ash and limestone delayed setting at the higher w/c ratio, the opposite occurred as this reduced, compared to the binary mixes. It was also found that the yield stress increased with GGBS level and further with the addition of ternary materials (particularly limestone) compared to CEM I. The superplastiser (SP) dosage requirement in concrete was found to decrease with increasing w/c ratio, and ternary additions reduced this compared to binary and CEM I concrete with the effect most noticeable at low w/c ratio. Early strength development was less than CEM I for binary concretes and differences increased with GGBS level. Improvements with the introduction of fly ash compared to the binary concretes were noted with increasing GGBS levels and w/c ratio. In general, the addition of LS gave reduced early strength for all concretes. Although at the 35% GGBS level binary concretes achieved similar strength to those of CEM I, the others generally gave reductions at all ages to 180 days, with differences increasing with GGBS level. However, with increasing w/c ratio and GGBS level improved strength development of ternary concretes, was noted compared to those of CEM I from 28 days. Permeation (absorption (initial surface absorption and sorptivity) and permeability (water penetration and air permeability)) and durability properties (accelerated carbonation and chloride ingress) of the test concrete were also investigated. At 28 days, for low GGBS levels, the binary concretes gave reduced absorption properties compared to CEM I, while the reverse occurred at high level. The effect of the ternary concretes gave further improvements at the lower GGBS levels and with increasing w/c ratio and curing time compared to CEM I. At the higher GGBS level the effect of the ternary additions was less noticeable but, in the case of limestone, improvements were still seen with increasing w/c ratio compared to CEM I. Similar effects were noted for the sorptivity results. The air permeability results gave higher values at 28 days for the binary and ternary concretes compared to CEM I, but significant improvements in the long-term at the lower GGBS level across the range of w/c ratios compared to CEM I concrete. Similar trends were found with water penetration tests. Accelerated carbonation increased with GGBS level for binary concretes compared to CEM I. These differences increased further with the introduction of fly ash and LS, particularly the former. In contrast rapid chloride tests indicated improvements with increasing GGBS levels compared to CEM I and further benefits with the inclusion of fly ash and limestone. Embodied CO2 (ECO2) was calculated based on published British Cement Association (BCA) values for each component of the mix and was shown to reduce with increasing w/c ratio and addition level in concrete. For concrete of an equal strength of 40N/mm2 the ECO2 could be almost halved (reduced from 343 kg/m3 for the CEM I to 176 kg/m3) for the ternary concretes at higher GGBS levels. These combination concretes also gave enhanced durability with regard to chloride ingress and at the lower w/c ratio comparable properties to CEM I in the case of carbonation. Overall, the results suggest that there is potential for ternary concretes to be used in the concrete industry given their ability to reduce ECO2, without compromising strength, permeation and durability properties of concrete.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:600753
Date January 2013
CreatorsBuss, Kirsty
ContributorsMcCarthy, Michael
PublisherUniversity of Dundee
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://discovery.dundee.ac.uk/en/studentTheses/0da1012f-5af4-470d-bec1-a9c51df03ab8

Page generated in 0.0018 seconds