Climate Change has been related to GHG emissions, of both natural and anthropogenic origin. Agricultural management practices like reduced tillage and intensive cropping systems have a significant impact on the flow of C among its sources and sinks. These management practices involve complex biophysical interactions resulting in a range of impacts on farm income and GHG abatement. The focus of this study was on the impact of alternative annual crop tillage systems on GHG emissions and income to better inform climate change mitigation policy in agriculture. Besides tillage intensity, cropping intensity and crop mix and the interaction of these characteristics with the biological and physical attributes, the emission and income effects are a function of factor inputs, factor costs and commodity prices. Therefpre, the analysis was multi-disciplinary in nature and the tool of choice that depicts impacts on individual indicators is Trade-off Analysis (TOA). A component of risk analysis was also included. The analysis focused on short and long-term performance, the uncertainty of soil N2O emission coefficients as well as changes in weather patterns. As the adoption of reduced till has been a relatively recent development and as such, there is not a lot of long-term biophysical and economic data, which limits the effectiveness of econometric analysis. The different scenarios of uncertainty and long-term impacts were analysed by use of a simulation model. The model was parameterised with Intergovernmental Panel on Climate Change (IPCC) 1996 coefficients, a farmer survey, and cost data from Saskatchewan Agriculture Agri-Food and Rural Revitalization (SAFRR) for 2004. Results indicated that net GHG emissions were relatively lower for reduced tillage management while conventional tillage may be relatively more attractive from an economic perspective. However, results indicated that such economic factors as risk and economies of size may have a significant influence on this latter result. The study also highlighted the need to evaluate the GHG abatement potential of reduced tillage while simultaneously considering the abatement capability of the farm.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-04222005-145602 |
Date | 25 April 2005 |
Creators | Samarawickrema, Antony Kanthalal |
Contributors | Belcher, Kenneth W. |
Publisher | University of Saskatchewan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-04222005-145602/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0021 seconds