Dans cette thèse, nous cherchons à répondre à une problématique formulée par la DGA Techniques navales pour surveiller une zone stratégique : planifier le déploiement spatial et temporel optimal d’un ensemble de capteurs de façon à maximiser les chances de détecter une cible mobile et intelligente. La cible est dite intelligente car elle est capable de détecter sous certaines conditions les menaces que représentent les capteurs et ainsi de réagir en adaptant son comportement. Les déploiements générés pouvant aussi avoir un coût élevé nous devons tenir compte de ce critère lorsque nous résolvons notre problématique. Il est important de noter que la résolution d’un problème de ce type requiert, selon les besoins, l’application d’une méthode d’optimisation mono-objectif voire multiobjectif. Jusqu’à présent, les travaux existants n’abordent pas la question du coût des déploiements proposés. De plus la plupart d’entre eux ne se concentrent que sur un seul aspect à la fois. Enfin, pour des raisons algorithmiques, les contraintes sont généralement discrétisées.Dans une première partie, nous présentons un algorithme qui permet de déterminer le déploiement spatio-temporel de capteurs le plus efficace sans tenir compte de son coût. Cette méthode est une application à l’optimisation de la méthode multiniveau généralisée.Dans la seconde partie, nous montrons d’abord que l’utilisation de la somme pondérée des deux critères permet d’obtenir des solutions sans augmenter le temps de calcul. Pour notre seconde approche, nous nous inspirons des algorithmes évolutionnaires d’optimisation multiobjectif et adaptons la méthode multiniveau généralisée à l’optimisation multiobjectif. / In this work, we propose a solution to a problem issued by the DGA Techniques navales in order to survey a strategic area: determining the optimal spatio-temporal deployment of sensors that will maximize the detection probability of a mobile and smart target. The target is said to be smart because it is capable of detecting the threat of the sensors under certain conditions and then of adapting its behaviour to avoid it. The cost of a deployment is known to be very expensive and therefore it has to be taken into account. It is important to note that the wide spectrum of applications within this field of research also reflects the need for a highly complex theoretical framework based on stochastic mono or multi-objective optimisation. Until now, none of the existing works have dealt with the cost of the deployments. Moreover, the majority only treat one type of constraint at a time. Current works mostly rely on operational research algorithms which commonly model the constraints in both discrete space and time.In the first part, we present an algorithm which computes the most efficient spatio-temporal deployment of sensors, but without taking its cost into account. This optimisation method is based on an application of the generalised splitting method.In the second part, we first use a linear combination of the two criteria. For our second approach, we use the evolutionary multiobjective optimisation framework to adapt the generalised splitting method to multiobjective optimisation. Finally, we compare our results with the results of the NSGA-II algorithm.
Identifer | oai:union.ndltd.org:theses.fr/2013AIXM4318 |
Date | 17 October 2013 |
Creators | Chouchane, Mathieu |
Contributors | Aix-Marseille, Ouladsine, Mustapha |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds