Return to search

Self-Assembled DNA Origami Templates for the Fabrication of Electronic Nanostructures

An important goal of nanoscience is the self-assembly of nanoscale building blocks into complex nanostructures. DNA is an important and versatile building block for nanostructures because of its small size, predictable base pairing, and numerous sequence possibilities. I use DNA origami to design and fold DNA into predesigned shapes, to assemble thin, branched DNA nanostructures as templates for nanoscale metal features. Using a PCR-based scaffold strand generation procedure, several wire-like nanostructures with varying scaffold lengths were assembled. In addition, more complex prototype circuit element structures were designed and assembled, demonstrating the utility of this technique in creating complex templates. My fabrication method for DNA-templated nanodevices involves a combination of techniques, including: solution assembly of the DNA templates, surface orientation and placement, and selective nanoparticle attachment to form nanowires with designed gaps for the integration of semiconducting elements to incorporate transistor functionality. To demonstrate selective surface placement of DNA templates, DNA origami structures have been attached between gold nanospheres assembled into surface arrays. The DNA structures attached with high selectivity and density on the surfaces. In a similar base-pairing technique, 5 nm gold nanoparticles were aligned and attached to specific locations along DNA templates and then plated to form continuous metallic wires. The nanoparticles packed closely, through the use of a high density of short nucleotide attachment sequences (8 nucleotides), enabling a median gap size of 4.1 nm between neighboring nanoparticles. Several conditions, including hybridization time, magnesium ion concentration, ratio of nanoparticles to DNA origami, and age of the nanoparticle solution were explored to optimize the nanoparticle attachment process to enable thinner wires. These small, branched nanowires, along with the future addition of semiconducting elements, such as carbon nanotubes, could enable the formation of high-density self-assembled nanoscale electronic circuits.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-4999
Date05 September 2013
CreatorsGates, Elisabeth Pound
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Theses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0022 seconds