The interest of using GPU:s as general processing units for heavy computations (GPGPU) has increased in the last couple of years. Manufacturers such as Nvidia and AMD make GPU:s powerful enough to outrun CPU:s in one order of magnitude, for suitable algorithms. For embedded systems, GPU:s are not as popular yet. The embedded GPU:s available on the market have often not been able to justify hardware changes from the current systems (CPU:s and FPGA:s) to systems using embedded GPU:s. They have been too hard to get, too energy consuming and not suitable for some algorithms. At SICK IVP, advanced computer vision algorithms run on FPGA:s. This master thesis optimizes two such algorithms for embedded GPU:s and evaluates the result. It also evaluates the status of the embedded GPU:s on the market today. The results indicates that embedded GPU:s perform well enough to run the evaluatedd algorithms as fast as needed. The implementations are also easy to understand compared to implementations for FPGA:s which are competing hardware.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-112575 |
Date | January 2014 |
Creators | Nilsson, Mattias |
Publisher | Linköpings universitet, Datorseende, Linköpings universitet, Tekniska högskolan |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds