Return to search

Adéquation algorithme-architecture de réseaux de neurones à spikes pour les architectures matérielles massivement parallèles / Algorithm-architecture adequacy of spiking neural networks for massively parallel processing hardware

Cette dernière décennie a donné lieu à la réémergence des méthodes d'apprentissage machine basées sur les réseaux de neurones formels sous le nom d'apprentissage profond. Bien que ces méthodes aient permis des avancées majeures dans le domaine de l'apprentissage machine, plusieurs obstacles à la possibilité d'industrialiser ces méthodes persistent, notamment la nécessité de collecter et d'étiqueter une très grande quantité de données ainsi que la puissance de calcul nécessaire pour effectuer l'apprentissage et l'inférence avec ce type de réseau neuronal. Dans cette thèse, nous proposons d'étudier l'adéquation entre des algorithmes d'inférence et d'apprentissage issus des réseaux de neurones biologiques pour des architectures matérielles massivement parallèles. Nous montrons avec trois contributions que de telles adéquations permettent d'accélérer drastiquement les temps de calculs inhérents au réseaux de neurones. Dans notre premier axe, nous réalisons l'étude d'adéquation du moteur BCVision de Brainchip SAS pour les plate-formes GPU. Nous proposons également l'introduction d'une architecture hiérarchique basée sur des cellules complexes. Nous montrons que l'adéquation pour GPU accélère les traitements par un facteur sept, tandis que l'architecture hiérarchique atteint un facteur mille. La deuxième contribution présente trois algorithmes de propagation de décharges neuronales adaptés aux architectures parallèles. Nous réalisons une étude complète des modèles computationels de ces algorithmes, permettant de sélectionner ou de concevoir un système matériel adapté aux paramètres du réseau souhaité. Dans notre troisième axe nous présentons une méthode pour appliquer la règle Spike-Timing-Dependent-Plasticity à des données images afin d'apprendre de manière non-supervisée des représentations visuelles. Nous montrons que notre approche permet l'apprentissage d'une hiérarchie de représentations pertinente pour des problématiques de classification d'images, tout en nécessitant dix fois moins de données que les autres approches de la littérature. / The last decade has seen the re-emergence of machine learning methods based on formal neural networks under the name of deep learning. Although these methods have enabled a major breakthrough in machine learning, several obstacles to the possibility of industrializing these methods persist, notably the need to collect and label a very large amount of data as well as the computing power necessary to perform learning and inference with this type of neural network. In this thesis, we propose to study the adequacy between inference and learning algorithms derived from biological neural networks and massively parallel hardware architectures. We show with three contribution that such adequacy drastically accelerates computation times inherent to neural networks. In our first axis, we study the adequacy of the BCVision software engine developed by Brainchip SAS for GPU platforms. We also propose the introduction of a coarse-to-fine architecture based on complex cells. We show that GPU portage accelerates processing by a factor of seven, while the coarse-to-fine architecture reaches a factor of one thousand. The second contribution presents three algorithms for spike propagation adapted to parallel architectures. We study exhaustively the computational models of these algorithms, allowing the selection or design of the hardware system adapted to the parameters of the desired network. In our third axis we present a method to apply the Spike-Timing-Dependent-Plasticity rule to image data in order to learn visual representations in an unsupervised manner. We show that our approach allows the effective learning a hierarchy of representations relevant to image classification issues, while requiring ten times less data than other approaches in the literature.

Identiferoai:union.ndltd.org:theses.fr/2018TOU30318
Date11 July 2018
CreatorsFerré, Paul
ContributorsToulouse 3, Thorpe, Simon, Mamalet, Franck
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds