Return to search

Approche pharmacologique dans la thérapie cellulaire : rôle de l'acide rétinoïque dans la survie et la différenciation des myoblastes humains / Pharmacological approach in cell therapy : role of retinoic acid in the survival and differentiation of human myoblasts

Les cellules satellites sont considérées comme de véritables cellules souches du muscle squelettique. Une fois transplantées dans un muscle hôte, les myoblastes, cellules filles des cellules satellites, sont capables de fusionner avec les fibres musculaires existantes, permettant ainsi de modifier de façon permanente le muscle receveur. La greffe des cellules satellites est donc une des thérapies dans la lutte contre les maladies musculaires dégénératives ou myopathies. Malheureusement les premiers essais cliniques sont décevants compte tenu en partie d’une mortalité massive au sein des myoblastes implantés. Plusieurs approches ont été développées pour réduire la mortalité des myoblastes. Notre approche a été de sélectionner et de purifier une population de cellules plus aptes à résister au stress cytotoxique. Les aldéhydes déhydrogenases (ALDH) sont une famille d’enzymes capables de détoxiquer efficacement les résidus aldéhydes générés par les espèces réactives de l’oxygène. Nous avons montré récemment que l’activité ALDH est élevée dans une majorité des myoblastes humains. Cette activité est associée à une augmentation de la survie cellulaire, ex vivo, suite à un stress oxydant induit au peroxyde d’hydrogène (H2O2) et, in vivo, lorsque les myoblastes ALDHhigh sont implantés dans des souris immunodéprimées scid. De plus, nous avons montré que la protéine Aldh1a1 est responsable de la totalité de l’activité ALDH dans les myoblastes humains. La protéine Aldh1a1 fait partie d’un sous groupe des ALDH appelées rétinaldehydes. Ces enzymes catalysent l’oxydation de la vitamine A en acide rétinoïque qui se lie et active les récepteurs nucléaires de l’acide rétinoïque. Dans ce projet, je vais chercher à savoir si l’activité anti-apoptotique de l’ALDH dans les myoblastes humains est dépendante de la synthèse d’acide rétinoïque. Au cours de mon stage M2R dans le laboratoire, j’ai montré que les myoblastes humains exposés à un stress oxydatif perdent leur intégrité cellulaire. Le traitement par l'acide rétinoïque protège les myoblastes humains de ce stress cytotoxique. L'analyse des transcriptomes des myoblastes traités à l’acide rétinoïque a révélé que la glutathione péroxydase 3 et la superoxyde dismutase 2, gènes codant pour des enzymes antioxydantes, sont des gènes cibles potentiels de l’acide rétinoïque. Dans ce projet, objectif 1, je propose d'étendre ces résultats aux myoblastes provenant de patients atteints de dystrophie Facioscapulohumeral (FSHD), une maladie musculaire dégénérative. Puisque l’équipe de Winokur et notre équipe ont démontré la présence d’une susceptibilité au stress oxydant dans ces myoblastes FSHD, nous postulons que la voie de signalisation des rétinoïdes pourrait stabiliser ce stress oxydatif et protègerait les myoblastes FSHD durant le processus de transplantation. Dans l’objectif 2, je vais inactiver l’expression de GPx3 et de SOD-2 en utilisant des shRNA afin de déterminer si GPX3 et SOD-2 sont responsables des effets anti-apoptotiques de l'acide rétinoïque. L’objectif 3 aura pour but de déterminer si l'acide rétinoïque améliore la survie des myoblastes sains et FSHD dans des essais de transplantation chez des souris immunodéficientes. Enfin, dans un projet à plus long terme, objectif 4, je testerais l'hypothèse que le statut en vitamine A (le précurseur de l'acide rétinoïque) est important pour la survie des cellules satellites et leur expansion chez l’adulte. Par conséquent, améliorer la survie des cellules souches musculaires afin d'augmenter la masse musculaire pourrait s'avérer être une stratégie thérapeutique importante pour contrecarrer l’évolution des dystrophies musculaires. / Mouse and human satellite cells have been shown to be functional muscle stem cells. Since myoblasts, the progeny of satellite cells can be transplanted and fuse with endogenous muscle fibers to form hybrid cells, myoblast transplantation represents a potential approach for the treatment of muscle diseases. Although other limitations, such as immune rejection or limited spread into the host tissue are also important, failure of myoblast transfer in the initial clinical trials was at least partly related to poor survival rate of transplanted myoblasts. Several approaches have been developed to reduce early loss of injected myoblasts. The approach in the laboratory was to select and purify a pool of myoblasts characterized by an improved survival response. Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Their findings indicate that high ALDH activity is present in a majority of human myoblasts. This activity is correlated ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when ALDHhigh myoblasts were transplanted into host muscle of immune deficient scid mice. They demonstrated that Aldh1a1 protein contributes to most if not all ALDH activity in human myoblasts. Aldh1a1 catalyzes the irreversible oxidation of vitamin A (retinol) to retinoic acid (RA) which binds and activates nuclear retinoic acid receptor (RAR)/Retinoic X receptor (RXR) heterodimers. Since high ALDH activity is correlated to improved cell viability, we will ask whether part of this biological activity is mediated by retinoic acid synthesis. In this project, we propose to determine whether retinoids (vitamin A and retinoic acid) protect human muscle precursor cells from cytotoxic damages and improved cell survival in transplantation assays. During my M2R training, I showed that human myoblasts exposed to an oxidative stress lost their integrity. Treatment with retinoic acid impaired these cytotoxic damages ex vivo. Microarray analysis of retinoic acid treated myoblasts revealed glutathione peroxidase 3 and superoxide dismutase 2, genes encoding antioxidant enzymes, as a potential RA target genes. In this project, aim 1, I propose to extend these results to myoblasts derived from patients with Facioscapulohumeral dystrophy (FSHD), a muscle degenerative disease. Since the team of Winokur and our team found that FSHD myoblasts were highly susceptible to an induced oxidative stress, we postulate that retinoid signalling pathway may stabilise this oxidative stress and protect FSHD myoblasts during the process of transplantation. In aim2, I will inactivate Gpx-3 and SOD2 using shRNA to determine whether SOD-2 and GPx3 mediate the anti-apoptotic effects of retinoic acid. In the aim 3, I will determine whether retinoic acid improves myoblast survival in transplantation assays in animals. Finally, in a more long-term project, aim 4, I will test the hypothesis that vitamin A status (the precursor of retinoic acid) is important for satellite cell survival and expansion in the offspring. Therefore, manipulating cell survival in order to increase the mass of muscle produced from a pool of muscle precursor cells could be an important therapeutic strategy to counteract the course of muscular dystrophy.

Identiferoai:union.ndltd.org:theses.fr/2015MONTT003
Date18 February 2015
CreatorsEl Haddad, Marina
ContributorsMontpellier, Montpellier, Laoudj-Chenivesse, Dalila, Carnac, Gilles
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds