In this thesis we consider the following two fundamental problems for semigroup presentations: 1. Given a semigroup find a presentation defining it. 2. Given a presentation describe the semigroup defined by it. We also establish other related results. After an introduction in Chapter 1, we consider the first problem in Chapter 2, and establish a presentation for the commutative semigroup of integers Zpt. Dually, in Chapter 3 we consider the second problem and study presentations of semigroups related to the direct product of cyclic groups. In Chapter 4 we study presentations of semigroups related to dihedral groups and establish their V-classes structure in Chapter 5. In Chapter 6 we establish some results related to the Schutzenberger group which were suggested by our studies of the semigroup presentations in Chapters 3 and 4. Finally, in Chapter 7 we define and study new classes of semigroups which we call R, L-semi-commutative and semi-commutative semigroups and they were also suggested by our studies of the semigroup presentations in Chapters 3 and 4.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:750461 |
Date | January 1997 |
Creators | Ibrahim, Mohammed Ali Faya |
Contributors | Robertson, E. F. ; Campbell, C. M. |
Publisher | University of St Andrews |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10023/13689 |
Page generated in 0.0018 seconds