Activated receptor tyrosine kinases recruit many signalling proteins to initiate downstream cell proliferation and survival pathways, including phosphatidylinositol 3-kinase (PI3K), a heterodimer consisting of a p85 regulatory protein and a p110 catalytic protein. Our laboratory has previously shown the p85α protein also has in vitro GTPase activating protein (GAP) activity towards Rab5 and Rab4, small GTPases that regulate vesicle trafficking events for activated receptors. Expression of a p85α protein containing an arginine to alanine substitution at position 274 (p85R274A) that affects its GAP activity, caused sustained levels of activated platelet-derived growth factor receptors (PDGFRs), enhanced downstream signalling, and resulted in cellular transformation. Together with other data, this suggested that in p85R274A-expressing cells, PDGFRs are more rapidly trafficked through the endocytic pathway, which reduces opportunities for sorting events necessary for receptor degradation. Our laboratory has observed previously that p85 was capable of binding to both Rab5-GDP, as well as Rab5-GTP, which is an atypical characteristic of GAP proteins, whereas p110β had previously been reported to bind Rab5-GTP selectively. Based on these observations, this thesis project was designed to test the hypothesis that both proteins contributed GAP activity towards Rab5, with p85 providing a catalytic arginine residue (R274) and p110β providing switch stabilization functions specific to the GTP-bound state. To accomplish the thesis objective, cells expressing individual p85 defects (lacking GAP activity, R274A; or lacking p110-binding ability through deletion of residues 478-513, Δ110) were compared to cells expressing a double mutant missing both functions. Stable clonal NIH 3T3 cell lines were generated and selected in G418 and clones expressing similar levels of FLAG-tagged p85 wild type or mutants compared to the control cell lines (NIH 3T3, FLAG-vector control, p85 wild type, and p85R274A) were chosen for analysis. A time-course of PDGF stimulation showed that cells expressing p85R274A or p85Δ110+R274A have sustained phosphorylation levels of the PDGFR, reduced rates of PDGFR degradation and sustained MAPK/Erk signalling. Contrary to the cellular transformation previously reported for p85R274A-expressing cells, expression of p85Δ110+R274A did not lead to cellular transformation. These divergent results suggest that p85-associated p110 serves two functions. As the catalytic subunit of PI3K, one function is the localized generation of PI3,4,5P3 lipids at the plasma membrane for Akt activation, and possibly during receptor endocytosis where it could impact MAPK/Erk activation/deactivation kinetics and cell transformation. These results support a second function for p110 in the regulation of PDGFR activation/deactivation kinetics and PDGFR half-life, both strongly influenced by alterations in PDGFR trafficking. This suggests that p110β may regulate PDGFR trafficking by providing Rab5-GTP switch stabilization that complements the catalytic arginine residue (R274) within p85, and that p85α and p110β work together as a Rab5 GAP.
The role of PDGFR in the localization of the RabGAP function of p85 to specific subcellular compartments was also examined. It was hypothesized that PDGFR may help localize the RabGAP function of p85 to vesicles containing Rab5 or Rab4 through the binding of p85 to phosphorylated tyrosine residues on activated PDGFR. Stable cell lines expressing individual p85 defects (lacking GAP activity, R274A; or lacking PDGFR-binding ability through site-directed mutation of residues 358 and 649 from arginine to alanine, ΔR; or a double mutant missing both functions) demonstrated that p85R274A or p85ΔR+R274A expression leads to sustained PDGFR activation and signalling, and to delayed PDGFR degradation in response to PDGF stimulation. The sustained signalling observed resulted in cellular transformation in cells expressing p85R274A or p85ΔR+R274A. The data suggests that PDGFR does not play a role in the localization of the RabGAP activity of p85.
The findings of this study elucidates important non-canonical functions of the PI3K heterodimer and contributes to our understanding of how specific mutations in both p85 and p110β within regions implicated in the regulation of RabGAP activity can alter signalling events and lead to enhancement of tumour-associated phenotypes.
Identifer | oai:union.ndltd.org:USASK/oai:ecommons.usask.ca:10388/ETD-2014-07-1655 |
Date | 2014 July 1900 |
Contributors | Anderson, Deborah H. |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text, thesis |
Page generated in 0.002 seconds