Return to search

Study on the Optical Properties for InGaN/GaN Multilayer Quantum Well Structures

The thesis mainly probes into the effects that the structure below multi quantum layer as regards the efficiency of luminescence of blue light LED in the different number layers and make further comparison. In the article, the students separately make analysis and comparison to the single quantum well , five multi quantum wells , ten multi quantum wells and thirty multi quantum wells. And discovered that different number layers of quantum well will occur different Phase Separation and Strain in the film. So the article mainly focuses on : (1.)Phase Separation in various of quantum well, it occurs different In-rich reaction and (2.)Different Strain levels which occurs different dislocation reaction. The two mechanisms will be discussed in detail with the effects of luminescence reaction of LED.
According to the results of experiment, We found that it is easier to form V-shape defects and dislocation with the increasing indium content. Under the high indium content, the density of In-rich will increase obviously and spread to the GaN barrier, then the original structure of quantum well will be destroyed and descend the efficacy of luminescence. In the thicker GaInN quantum well, it will induce larger energy of strain inside the film, So the defect density will increase due to release the strain energy. It was also discovered the intensity of luminescence descend after measuring by PL. When grow different number layers , it was discovered that higher quantum layer will produce the roughness surfaces when using AFM . So the higher quantum layers will make greater influence in the efficacy of luminescence. By experiment, we found that the five to ten quantim wells will have the better photo characteristic.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0725103-133605
Date25 July 2003
CreatorsWang, Kai-Hong
ContributorsYen-Sheng Lin, Wang-Chuang Kuo, Uerng-Yih Ueng, Tai-Fa Young
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0725103-133605
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0018 seconds