O estudo das condições de operação de um motor de indução em um ambiente industrial é indispensável, tendo em vista que eventuais problemas podem contribuir para um prejuízo na produção, ou ainda para custos adicionais relacionados à falta de manutenção dos equipamentos. Uma das principais falhas que podem ocorrer em um motor de indução do tipo gaiola de esquilo durante sua operação é o rompimento de uma ou mais barras que compõem o seu rotor. Apresenta-se neste trabalho um novo método para auxiliar na detecção de barras quebradas em um rotor tipo gaiola de esquilo, para um motor de grande porte, durante sua operação em regime permanente. A partir de um modelo matemático foi possível avaliar o rompimento de barras do rotor, detectando em uma posição específica, a variação da densidade de fluxo magnético resultante, produzida pela contribuição do fluxo de dispersão de cada barra do rotor, bem como pelo fluxo criado pelas correntes do estator. Um sensor de efeito Hall é instalado entre duas bobinas do estator, a fim de representar a posição onde é realizado o cálculo da densidade de fluxo magnético resultante pela modelagem matemática proposta. O sinal gerado pelo sensor a partir de uma falha é comparado com aquele obtido a partir do rotor saudável, para posterior análise. O trabalho sugere ainda a aplicação do método de detecção da falha em conjunto com uma técnica de inteligência artificial baseada nas redes neurais artificiais, a fim de contribuir para o diagnóstico da falha e estimativa do número de barras rompidas. Os resultados obtidos da simulação, bem como os dados obtidos durante o ensaio são apresentados e usados na validação do modelo matemático desenvolvido. / The study of operational conditions of an induction motor in an industrial environment is indispensable, once eventual problems can contribute for production losses, or still for additional costs related to the lack of equipments maintenance. Among the principal faults, in a squirrel cage induction motor can occur the breaking of one or more rotor bars. This work presents a new method in aid of detection of broken bars in a large squirrel cage induction motor during its operation in steady-state. A mathematical model is used to evaluate the broken rotor bars, detecting in a specific point, the resulting magnetic flux density produced by the leakage flux created by the rotor and stator currents. The Hall effect sensor is installed between two stator coils, in order to represent the position where the resulting magnetic flux density is calculated by the proposed mathematical model. The signal detected in the sensor during a fault, is compared to the obtained result of the magnetic flux density from a healthy rotor for analysis. The work still suggests the application of the artificial intelligence technique, based on artificial neural networks in the mathematical model, in order to aid on the fault detection and estimate of the number of broken bars. The simulation and experimental results are presented in order to validate the developed mathematical model.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-15092006-165225 |
Date | 28 June 2006 |
Creators | Dias, Cleber Gustavo |
Contributors | Chabu, Ivan Eduardo |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds