Return to search

Assessing Limb Symmetry using the Clinically Accessible loadsol®

Decreased gait symmetry has been correlated with an increased fall risk, abnormal joint loading and decreased functional outcomes. Therefore, symmetry is focused on in the rehabilitation of many patient populations. Currently, load based symmetry is collected using expensive and immobile devices that are not clinically accessible, but there is a clinical need for an objective measure of loading symmetry during daily tasks like walking. Therefore, the purpose of this dissertation was to 1) assess the validity and reliability of the loadsol® to capture ground reaction force data, 2) use the loadsol® to determine the differences in symmetry between adults with a TKA and their healthy peers and 3) explore the potential of a commercially available biofeedback system to acutely improve gait symmetry in adults. The results of this work indicate that the loadsol® is a valid and reliable method of collecting loading measures during walking in both young and older adults. TKA patients who are 12-24 months post-TKA have lower symmetry in the weight acceptance peak force, propulsive peak force and impulse when compared to their healthy peers. Finally, a case study with four asymmetric adults demonstrated that a 10-minute biofeedback intervention with the loadsol® resulted in an acute improvement in symmetry. Future work is needed to determine the potential of this intervention to improve symmetry in patient populations and to determine whether the acute response is retained following the completion of the intervention. / Doctor of Philosophy / Symmetry during walking is a valuable attribute as asymmetry has been correlated with an increased fall risk and decreased mobility. Currently, load based symmetry is collected using expensive and immobile devices that are not clinically accessible. As a result, there is a critical need for a system that can objectively measure load and loading symmetry during rehabilitation and everyday tasks in a variety of settings. A new device has been developed (loadsol®) that could potentially fill this need. Before it can be used to assess and treat patients, the loadsol® needed to be assessed for accuracy and reliability in both older and younger adults and at various speeds. Then we needed to determine if the loadsol® can be used to look at the levels of symmetry in patients who have had a knee replacement compared to their healthy peers. Finally, we tested a visual biofeedback intervention with the loadsol® to see if this intervention was able to improve symmetry. We found that the loadsol® is accurate and reliable. Patients with a knee replacement were less symmetric than their age matched peers. Finally, in a small study, the visual biofeedback intervention improved symmetry during walking in a group of people with less than 90% symmetry. Future work is needed to explore the potential of this biofeedback intervention to improve symmetry in various patient populations and to determine the extent to which patients are able to retain these improvements.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/89102
Date23 April 2019
CreatorsRenner, Kristen Elizaberth
ContributorsDepartment of Biomedical Engineering and Mechanics, Queen, Robin M., Tarazaga, Pablo Alberto, Kelliher, Aisling, Moskal, Joseph T., Leonessa, Alexander
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0129 seconds