Return to search

Temporal gait parameters captured by surface electromyography measurement.

本論文以表面肌電(Surface Electromypgraphy, SEMG)信號中動態信號能被獲取為前提,把被處理過的表面肌電信號轉變成步態參數 (gait parameters). 我們利用一些便攜式步態測量裝置,如加速度計,陀螺儀和腳踏開關和表面肌電圖測量裝置去採集步態參數。信號的處理和生物信息(身體的動態特性)轉換都加以討論和解釋,如濾波和預測肌肉的收縮等。 / 我們利用被採集步態參數作步態分析,並發現表面肌電信號內的動態信號的頻率特性能夠代表運動過程中的非恆久步態參數,如行走時的足部擺動的期間 (period of swing phase)、行走時的足部站立的期間 (period of stance phase) 和行走時的步幅期間 (period of stride)。 / 最後,我們發現可以利用線性預測 (linear prediction) 和閾值分析 (threshold analysis) 處理表面肌電信號以便獲得三種非恆久步態參數。根據我們的觀察,行走時足部擺動的期間可以被股直肌(rectus femoris, RF)的表面肌電信號捕獲,行走時的步幅期間可以被二頭肌股(bicep femoris, BF)的表面肌電信號捕獲,而行走時的足部站立的期間則可由BF和RF輸出的結果的平均值所捕獲。因此,表面肌電信號是可以作為一種獲取非恆久步態參數的工具。 / Electromyography (EMG) signal is an important quantity for describing the muscle’s activities and provides additional information in describing movement and locomotion in gait analysis. Surface electromyography (SEMG) measurement is a non-vivo technology for acquiring EMG signal. During the measurement of SEMG signals, the motion artifact is captured. Filters are applied to eliminate the frequency characteristics of motion artifact. However, this unwanted signal could be useful for obtaining the temporal gait parameters during the movement, such as the period of swing phase, the period of stance phase, and the period of stride of free walking. / In this study, accelerometers, gyroscopes and foot switches are used for the acquisition of kinematics and surface electromyography is used for measuring muscle’s activities. These measurement devices are evaluated in a gait study on lower extremity. The signal processing and conversion of bio-information (the dynamic characteristics of body) are discussed, such as filtering, and the prediction of muscle’s contraction. / Lastly, temporal gait parameters could be captured by SEMG measurement with the linear prediction process and threshold analysis. From the results, it is observed that the swing period can be captured through the SEMG measurement for rectus femoris (RF), the stride period can be captured by the SEMG measurement for bicep femoris (BF), and the stance period can be captured by the averaged result of the outputs of BF and RF. Thus, SEMG measurement could be a tool for capturing temporal gait parameters. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Chan, Chi Chong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 67-69). / Abstracts also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Literature Review --- p.1 / Chapter 1.2 --- Objectives --- p.5 / Chapter 1.3 --- Thesis Description --- p.5 / Chapter 2 --- Description for Wearable Gait Measurement --- p.7 / Chapter 2.1 --- Wearable Sensors --- p.8 / Chapter 2.2 --- Surface Electromyography (SEMG) --- p.12 / Chapter 2.3 --- Processing Unit --- p.15 / Chapter 2.4 --- Hardware Connection and Communication --- p.16 / Chapter 2.5 --- Summary --- p.20 / Chapter 3 --- Gait Analysis for Lower Extremity during Walking --- p.21 / Chapter 3.1 --- Gait Parameters Captured by Wearable Sensors --- p.21 / Chapter 3.1.1 --- Foot Switch: Walking Phase Detection --- p.22 / Chapter 3.1.2 --- Gyroscope: Frequency Response of Lower Limbs during Walking --- p.24 / Chapter 3.1.3 --- Accelerometer: Knee Joint Angle Estimation during Walking --- p.30 / Chapter 3.2 --- Analysis of Muscle Activities by SEMG signals --- p.36 / Chapter 3.3 --- Summary --- p.42 / Chapter 4 --- Temporal Gait Parameters during Walking by SEMG Measurement --- p.43 / Chapter 4.1 --- Motion Event and SEMG Signals --- p.43 / Chapter 4.2 --- Walking Phase Detection by SEMG Signals --- p.49 / Chapter 4.3 --- Temporal Gait Parameters --- p.53 / Chapter 4.4 --- Summary --- p.62 / Chapter 5 --- Conclusions, Contributions and Future Work --- p.63 / Chapter 5.1 --- Conclusions --- p.63 / Chapter 5.2 --- Contributions --- p.64 / Chapter 5.3 --- Future Work --- p.65 / Bibliography --- p.67

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_328509
Date January 2012
ContributorsChan, Chi Chong., Chinese University of Hong Kong Graduate School. Division of Mechanical and Automation Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatelectronic resource, electronic resource, remote, 1 online resource ([4], 69 leaves) : ill. (some col.)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0041 seconds