Return to search

The Role of AGN Feedback in Galaxy Formation / Le rôle de la rétroaction des noyaux actifs dans la formation des galaxies

L’objectif de ma thèse porte sur les interactions entre les noyaux actifs de galaxies et le milieu interstellaire des galaxies. En particulier, je mets l’accent sur les deux mécanismes possibles responsables de la production des vents par les trous noirs : les jets et les vents produits par le rayonnement de ces trous noirs. Les simulations hydrodynamiques de haute résolution des galaxies comprenant la rétroac- tion d’un jet ont montré que l’activité des noyaux actifs peut conduire à une pression exces- sive sur les régions denses de formation stellaire dans les galaxies, et donc à augmenter la formation d’étoiles, conduisant à un effet positif de rétroaction. Je montre que ces noyaux actifs induits par pression régulée et formation d’étoiles peuvent aussi être une explica- tion possible des taux de formation stellaire élevés observés dans l’Univers à haut décalage spectral. De plus, j’ai également étudié en détails comment le rayonnement émis à partir d’un disque d’accrétion autour du trou noir agit efficacement avec le milieu interstellaire et entraîne un fort vent galactique, en simulant la propagation des photons à partir des équations hydrodynamiques du rayonnement. Les simulations montrent que la grande luminosité d’un quasar est en effet capable de conduire des vents à grande échelle et à grande vitesse. Le rayonnement infrarouge est nécessaire pour transérer efficacement le gaz par multi-diffusion sur la poussière dans les nuages denses. Le nombre typique de multi-diffusion diminue rapidement quand le nuage central de gaz central se dilate et se rompt, ce qui permet au rayonnement de s’échapper à travers les canaux à faible densité. / Supermassive black holes (SMBHs) are known to reside in the centres of most large galaxies. The masses of these SMBHs are known to correlate with large-scale properties of the host galaxy suggesting that the growth of the BHs and large-scale structures are tightly linked. A natural explanation for the observed correlation is to invoke a self-regulated mechanism involving feedback from Active Galactic Nuclei (AGN). The focus of this thesis is on the interactions between AGN outflows and the ISM and how the feedback impacts the host galaxy. In particular, it focuses on the two possible mechanism of outflows, namely, outflows related to AGN jets and outflows produced by AGN radiation. High resolution, galaxy scale hydrodynamical simulations of jet-driven feedback have shown that AGN activity can over-pressurise dense star-formation regions of galaxies and thus enhance star formation, leading to a positive feedback effect. I propose, that such AGN-induced pressure-regulated star formation may also be a possible explanation of the high star formation rates recently found in the high-redshift Universe. In order to study in more detail the effects of over-pressurisation of the galaxy, I have performed a large set of isolated disc simulations with varying gas-richness in the galaxy. I found that even moderate levels of over-pressurisation of the galaxy boosts the global star formation rate by an order of magnitude. Additionally, stable discs turn unstable which leads to significant fragmentation of the gas content of the galaxy, similar to what is observed in high-redshift galaxies. The observed increase in the star formation rate of the galaxy is in line with theoretical predictions. I have also studied in detail how radiation emitted from a thin accretion disc surrounding the BH effectively couples to the surrounding ISM and drives a large scale wind. Quasar activity is typically triggered by extreme episodes of gas accretion onto the SMBH, in particular in high-redshift galaxies. The photons emitted by a quasar eventually couple to the gas and drive large scale winds. In most hydrodynamical simulations, quasar feedback is approximated as a local thermal energy deposit within a few resolution elements, where the efficiency of the coupling between radiation of the gas is represented by a single parameter tuned to match global observations. In reality, this parameter conceals various physical processes that are not yet fully un- derstood as they rely on a number of assumptions about, for instance, the absorption of photons, mean free paths, optical depths, and shielding. To study the coupling between the photons and the gas I simulated the photon propagation using radiation-hydrodynamical equations (RHD), which describe the emission, absorption and propagation of photons with the gas and dust. Such an approach is critical for a better understanding of the coupling between the radiation and gas and how hydrodynamical sub-grid models can be improved in light of these results...

Identiferoai:union.ndltd.org:theses.fr/2016PA066292
Date26 September 2016
CreatorsBieri, Rebekka
ContributorsParis 6, Mamon, Gary, Silk, Joseph, Dubois, Yohan
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds