We present a series of numerical galaxy formation studies which apply new numerical methods to produce increasingly realistic galaxy formation models. We first investigate the metallicity evolution of a large set of idealized hydrodynamical galaxy merger simulations of colliding galaxies. We find that inflows of metal--poor interstellar gas triggered by galaxy tidal interactions can account for the systematically lower central oxygen abundances observed in local interacting galaxies. We show the central metallicity evolution during merger events is determined by a competition between the inflow of low--metallicity gas and enrichment from star formation. We find a time-averaged depression in the galactic nuclear metallicity of ~0.07 dex for gas--poor disk--disk interactions, which explains the observed close pair mass-metallicity and separation-metallicity relationships. / Astronomy
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/12274604 |
Date | 06 June 2014 |
Creators | Torrey, Paul A |
Contributors | Hernquist, Lars Eric |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | open |
Page generated in 0.0017 seconds