Galaxies, galaxy groups and galaxy clusters are embedded in large dark matter halos. Most galaxies in the local universe are found in the galaxy group environment. Locating the centres of galaxy groups is crucial in order to study their properties such as their halo masses. It is often assumed that the most massive galaxy (or brightest galaxy) resides at the centre of the gravitational potential. With the aim of evaluating the validity of this paradigm in galaxy groups, we used two different methods to probe the centres of galaxy group halos: the weak gravitational lensing and dynamical methods. We use these two methods to determine the best definition of galaxy group centres.
Our sample is composed of 49 optically (spectroscopically) selected groups and 36 high quality X-ray-selected groups. In total our sample is composed of 78 distinct groups in the redshift range 0.1 < z < 0.9 from the GEEC sample. Our weak lensing analysis suggests that the weighted centre is a better definition than the most massive galaxy position. We address the question of whether or not the result is significantly different for X-ray and optically selected systems. For optically selected systems, the weighted centre is a significantly better assumption of the group centre than the most massive galaxies position. For the X-ray selected groups, the weighted centre and the most massive galaxy appear to trace the centre equally well, although the best definition is the location of the peak in X-ray emission. We evaluate, for the first time, the impact of dynamically complex groups on weak lensing analysis. Once we removed dynamically complex systems from our sample, the lensing signals for all centre definitions are in better agreement suggesting that groups with large offsets between the centre definitions are unevolved systems. For the dynamical method, velocity dispersion profiles suffer from large uncertainties and, therefore, we are unable to place any constraint on the centre definition from this technique. / Thesis / Master of Science (MSc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/16314 |
Date | 11 1900 |
Creators | Neault, Marie-Pier |
Contributors | Parker, Laura, Physics and Astronomy |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0018 seconds