Return to search

Estimation of Uncertain Vehicle Center of Gravity using Polynomial Chaos Expansions

The main goal of this study is the use of polynomial chaos expansion (PCE) to analyze the uncertainty in calculating the lateral and longitudinal center of gravity for a vehicle from static load cell measurements. A secondary goal is to use experimental testing as a source of uncertainty and as a method to confirm the results from the PCE simulation. While PCE has often been used as an alternative to Monte Carlo, PCE models have rarely been based on experimental data. The 8-post test rig at the Virginia Institute for Performance Engineering and Research facility at Virginia International Raceway is the experimental test bed used to implement the PCE model. Experimental tests are conducted to define the true distribution for the load measurement systems' uncertainty. A method that does not require a new uncertainty distribution experiment for multiple tests with different goals is presented. Moved mass tests confirm the uncertainty analysis using portable scales that provide accurate results.

The polynomial chaos model used to find the uncertainty in the center of gravity calculation is derived. Karhunen-Loeve expansions, similar to Fourier series, are used to define the uncertainties to allow for the polynomial chaos expansion. PCE models are typically computed via the collocation method or the Galerkin method. The Galerkin method is chosen as the PCE method in order to formulate a more accurate analytical result. The derivation systematically increases from one uncertain load cell to all four uncertain load cells noting the differences and increased complexity as the uncertainty dimensions increase. For each derivation the PCE model is shown and the solution to the simulation is given. Results are presented comparing the polynomial chaos simulation to the Monte Carlo simulation and to the accurate scales. It is shown that the PCE simulations closely match the Monte Carlo simulations. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/33625
Date14 August 2008
CreatorsPrice, Darryl Brian
ContributorsMechanical Engineering, Southward, Steve C., Sandu, Adrian, Sandu, Corina
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationDPriceThesis_V5.pdf

Page generated in 0.0022 seconds