In the 1970's Serre conjectured a correspondence between modular forms and two-dimensional Galois representations. Ash, Doud, and Pollack have extended this conjecture to a correspondence between Hecke eigenclasses in arithmetic cohomology and n-dimensional Galois representations. We present some of the first examples of proven cases of this generalized conjecture.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1528 |
Date | 07 July 2006 |
Creators | Blackhurst, Jonathan H. |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.002 seconds