Experimental game theory is the use of game theoretic abstractions—games, players, and strategies—in experiments and simulations. It is often used in cases where traditional, analytical game theory fails or is difficult to apply. This thesis collects three previously published papers that provide domain-specific language (DSL) support for defining and executing these experiments, and for explaining their results.
Despite the widespread use of software in this field, there is a distinct lack of tool support for common tasks like modeling games and running simulations. Instead, most experiments are created from scratch in general-purpose programming languages. We have addressed this problem with Hagl, a DSL embedded in Haskell that allows the concise, declarative definition of games, strategies, and executable experiments. Hagl raises the level of abstraction for experimental game theory, reducing the effort to conduct experiments and freeing experimenters to focus on hard problems in their domain instead of low-level implementation details.
While analytical game theory is most often used as a prescriptive tool, a way to analyze a situation and determine the best course of action, experimental game theory is often applied descriptively to explain why agents interact and behave in a certain way. Often these interactions are complex and surprising. To support this explanatory role, we have designed visual DSL for explaining the interaction of strategies for iterated games. This language is used as a vehicle to introduce the notational quality of traceability and the new paradigm of explanation-oriented programming. / Graduation date: 2012
Identifer | oai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/26757 |
Date | 20 December 2011 |
Creators | Walkingshaw, Eric |
Contributors | Erwig, Martin |
Source Sets | Oregon State University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.002 seconds