Return to search

Detection techniques for the H.E.S.S. II telescope, data modeling of gravitational lensing and emission of blazars in HE-VHE astronomy

This thesis presents the study of four aspects of high energy astronomy.The first part of my thesis is dedicated to an aspect of instrument development for imaging atmospheric Cherenkov telescopes, namely the Level 2 trigger system of the High Energy Stereoscopic System (H.E.S.S.). My work on the project focused on the algorithm development and the Monte Carlo simulations of the trigger system and overall instrument (Moudden, Barnacka, Glicenstein et al. 2011a; Moudden, Venault, Barnacka et al. 2011b). The hardware implementation of the system is described andits expected performances are then evaluated. The H.E.S.S. array has been used to observe the blazar PKS 1510-089.The second part of my thesis deals with the data analysis and modeling of broad-band emission of this particular blazar. In part II of my thesis, I am presenting the analysis of the H.E.S.S. data: the light curve and spectrum of PKS 1510-089, together with the FERMI data and a collection of multi-wavelength data obtained with various instruments. I am presenting the model of PKS 1510-089 observations carried out during a flare recorded by H.E.S.S.. The model is based on a single zone internal shock scenario.The third part of my thesis deals with blazars observed by the FERMI-LAT, but from the point of view of other phenomena: a strong gravitational lensing. This part of my thesis shows the first evidence for gravitational lensing phenomena in high energy gamma-rays. This evidence comes from the observation of a gravitational lens system induced echo in the light curve of the distant blazar PKS 1830-211. Traditionalmethods for the estimation of time delays in gravitational lensing systems rely on the cross-correlation of the light curves from individual images. In my thesis, I used 300 MeV-30 GeV photons detected by the Fermi-LAT instrument. The FERMI-LAT instrument cannot separate the images of known lenses. The observed light curve is thus the superposition of individual image light curves. The FERMI-LAT instrument has the advantage of providing long, evenly spaced, time series with very low photonnoise. This allows to use directly Fourier transform methods. A time delay between the two compact images of PKS 1830-211 has been searchedfor both by the autocorrelation method and a new method: the "double power spectrum". The double power spectrum shows a 4.2 σ evidence for a time delay of 27.1±0.6 days (Barnacka et al. 2011), consistent with the results from Lovell et al. (1998) and Wiklind & Combes (2001).The last part of my thesis concentrates on another lensing phenomena called "femtolensing". The search for femtolensing effects has been used to derive limits on the primordial black holes abundance. The abundance of primordial black holes is currently significantly constrained in a wide range of masses. The weakest limits are established for the small mass objects, where the small intensity of the associated physical phenomenon provides a challenge for current experiments. I have usedgamma-ray bursts with known redshifts detected by the FERMI Gamma-ray Burst Monitor (GBM) to search for the femtolensing effects caused by compact objects. The lack of femtolensing detection in the GBM data provides new evidence that primordial black holes in the mass range 5 × 10^17 - 10^20 g do not constitute a major fraction of dark matter (Barnacka et al. 2012). My Ph.D. studies have been carried out jointly between the Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, in Warsaw in Poland and the IRFU institute of the Commissariat à l'énergie atomique et aux énergies alternatives(CEA) Saclay in France.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01056866
Date22 February 2013
CreatorsBarnacka, Anna
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0018 seconds