A novel photon flux monitor has been designed and tested for use at the Duke University High Intensity Gamma Source, where the photon beam produced is essentially mono-energetic but it is not tagged. Direct counting of the number of photons using a high-efficiency detector is not possible because of the high photon fluxes expected. Therefore, a direct counting detector with a low, accurately known efficiency was required.<p>
The photon flux monitor based on a five scintillator paddle system detects recoil electrons and positrons from photoelectric, Compton and pair-production processes. It has been designed to be insensitive to gain and detector threshold changes and to be usable for photon energies above 5 MeV. It has been calibrated using direct counting with a NaI detector and its efficiency has been shown to be well predicted by a GEANT4 simulation.<p>
Results of measurements, calibration and calculations required to characterize the 5-paddle photon flux monitor are presented. The photon flux monitor has met its design specifications of being able to determine the number of photons incident on it during the live time of a measurement to within a systematic error of 2%.<p>
A paper based on the work for this thesis has been published in the Nuclear Instruments and Methods in Physics Research Journal.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-03192010-134511 |
Date | 25 March 2010 |
Creators | Mavrichi, Octavian |
Contributors | Igarashi, Ru, Chang, Gap Soo, Dick, Rainer, Pywell, Rob, Johanson, Robert, Xiao, Chijin |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-03192010-134511/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.002 seconds