Return to search

KMESS: an open source software package using a semi-empirical mesh-grid method for the modeling of germanium detector efficiencies / Open source software package using a semi-empirical mesh-grid method for the modeling of germanium detector efficiencies

Traditional approaches in gamma-ray spectroscopy for determining the absolute full-energy peak efficiencies of germanium detectors are primarily either too time consuming or not economically viable. In addition, these approaches are difficult to use for arbitrary source shapes and counting geometries. An open source software package, KMESS (Kevin's Mesh Efficiency Simulator Software), was developed to address these problems. KMESS uses a new semi-empirical mesh-grid method to predict the absolute full-energy peak efficiencies of n- and p-type germanium detectors in both coaxial and closed-ended configurations. The model assumes that any gamma-ray source shape can be treated as a collection of point sources. The code was written in a modular form, making it easy to adapt for other detector configurations and materials. A suite of webbased graphical front-end tools was also developed to make the execution of KMESS user-friendly. KMESS can predict most full-energy peak efficiencies to within 10% accuracy for the energy range 100-1800 keV in less than 10 minutes. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/3257
Date28 August 2008
CreatorsJackman, Kevin Richard
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0017 seconds