Return to search

Multitemporal mapping of burned areas  in mixed landscapes in eastern Zambia

Fires occur extensively across Zambia every year, a problem recognized as a major threat to biodiversity. Yet, basic tools for mapping at a spatial and temporal scale that provide useful information for understanding and managing this problem are not available. The objectives of this research were: to develop a method to map the spatio-temporal seasonal fire occurrence using satellite imagery, to develop a technique for estimating missing data in the satellite imagery considering the possibility of change in land cover over time, and to demonstrate applicability of these new tools by analyzing the fine-scale seasonal patterns of landscape fires in eastern Zambia. A new approach for mapping burned areas uses multitemporal image analysis with a fuzzy clustering algorithm to automatically select spectral-temporal signatures that are then used to classify the images to produce the desired spatio-temporal burned area information. Testing with Landsat data (30m resolution) in eastern Zambia showed accuracies in predicting burned areas above 92%. The approach is simple to implement, data driven, and can be automated, which can facilitate quicker production of burned area information. A profile-based approach for filling missing data uses multitemporal imagery and exploits the similarity in land cover temporal profiles and spatial relationships to reliably estimate missing data even in areas with significant changes. Testing with simulated missing data from an 8-image spectral index sequence showed highly correlated (R2 of 0.78-0.92) and precise estimates (deviations 4-7%) compared to actual values. The profile-based approach overcomes the common requirement of gap-filling methods that there is gradual or no change in land cover, and provides accurate gap-filling under conditions of both gradual and abrupt changes. The spatio-temporal progression of landscape burning was evaluated for the 2009 and 2012 fire seasons (June-November) using Landsat data. Results show widespread burning (~ 60%) with most fires occurring late (August-October) in the season. Fire occurrence and burn patch sizes decreased with increasing settlement density and landscape fragmentation reflecting human influences and fuel availability. Small fires (< 5ha) are predominant and were significantly under-detected (>50%) by a global dataset (MODIS Burned Area Product (500m resolution)), underscoring the critical need of higher geometric resolution imagery such as Landsat imagery for mapping such fine-scale fire activity. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/71301
Date08 December 2014
CreatorsMalambo, Lonesome
ContributorsGeography, Heatwole, Conrad D., Campbell, James B. Jr., Thomas, Valerie A., Wynne, Randolph H.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0015 seconds