Orientadores: Sandra Lúcia da Cruz, Ana Maria Frattini Fileti / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-20T02:02:28Z (GMT). No. of bitstreams: 1
Sousa_ElisangelaOrlandide_D.pdf: 7481778 bytes, checksum: c6a75eef8a6e332ab1da367733280fd8 (MD5)
Previous issue date: 2012 / Resumo: Redes de tubulação são conhecidas como sistemas complexos de dutos deste a antiguidade e são utilizadas no transporte de líquidos e gases a longas distâncias. Um pequeno vazamento em uma tubulação pode provocar grandes perdas de produtos e sérios danos ao meio ambiente até serem detectados. Com o propósito de rastrear estes tipos de vazamentos, este trabalho tem como objetivo propor metodologias para a detecção de vazamentos em uma tubulação, de natureza rígida ou flexível, baseando-se no método acústico e na análise de transientes de pressão gerados a partir do vazamento, visando à localização e a determinação da magnitude dos vazamentos através da utilização de redes neurais artificiais. As metodologias propostas se destacam por não apresentarem impactos prejudiciais ao meio ambiente. Variações de transientes de pressão e o ruído sonoro gerados pela ocorrência de vazamentos foram detectados e analisados a partir de experimentos realizados em uma tubulação de ferro galvanizado de 60 m e uma tubulação flexível de 100 m de comprimento operando com escoamento contínuo de gás (ar), em várias condições de operação. O vazamento foi provocado em mais que uma posição ao longo das duas tubulações e utilizaram-se orifícios de diâmetros diferentes. Os transientes de pressão e os ruídos sonoros foram captados por um transdutor de pressão e um microfone, respectivamente, ambos instalados em um vaso de pressão, localizado no início da tubulação e acoplados a uma placa de aquisição de dados em um microcomputador. O sinal gerado pelo microfone foi amplificado e passou por um banco de filtros passa faixa sendo transformado em três sinais com amplitudes independentes, cada uma com uma faixa de freqüência específica de 1kHz, 5kHz e 9kHz. O programa de aquisição de dados foi escrito em linguagem C para ler e processar os dados. Os dados resultantes dos experimentos mostraram que foi possível detectar vazamentos, para todos os orifícios utilizados, baseado nos transientes de pressão e no método acústico. A dinâmica desses dados foi utilizada como entrada para o modelo neural para localizar e determinar a magnitude dos vazamentos, simultaneamente. O método de Levenberg-Marquardt com Regularização Bayesiana foi utilizado no treinamento dos modelos neurais. Os resultados apresentados pelo modelo neural desenvolvido indicaram com sucesso ao mesmo tempo a localização e a magnitude dos vazamentos / Abstract: Pipeline networks are complex systems of ducts used nowadays for gas and chemical products transporting through long distances. They frequently cross highly populated regions, water supplies or natural reserves. Even small leaks in pipelines can lead to great losses of products and serious damages to the environment before it could be detected. With the purpose to track these leaks, this work developed a technique to detection of leaks in pipelines, of rigid or flexible nature, based on acoustic method and on analysis of pressure transients generated by leak occurrence, in order to localization and determination the magnitude of leaks by using neural artificial networks. The methodologies proposed are notated for not having impacts on the environment. Variations of pressure transients and the noise generated by leakage will be detected and analyzed in a 60m-galvanized iron pipe and in a 100m-flexible pipe operating with continuous flow of gas (air) under various operating conditions. Leakages were provoked in many positions along the two pipes and used hole of distinct magnitudes. The pressure transients and the audible noise was captured by the pressure transducer and the microphone, respective, both installed inside the pressure vessel connected to a data acquisition system at a computer. The signal generated by the microphone was amplified and also passed through a bank of band pass filters being transformed into three signals with independent amplitude, each one with a band of specific frequency of 1 kHz, 5 kHz and 9 kHz. The data acquisition software was written in C language to read and process all data. The experimental results showed that it is possible to detect leaks in pipelines, for all holes, based on a pressure transient and on acoustic methods. The dynamics of these data in time is used as input to the neural model to location and determine of the leaks magnitude, simultaneously. The method chosen for training the neural networks was the Levenberg-Marquardt with Bayesian Regularization. The results of neural models indicated successfully in the same time the location and the magnitude of the leaks / Doutorado / Sistemas de Processos Quimicos e Informatica / Doutor em Engenharia Química
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/266822 |
Date | 20 August 2018 |
Creators | Sousa, Elisangela Orlandi de |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Fileti, Ana Maria Frattini, 1965-, Cruz, Sandra Lúcia da, 1957-, Rodrigues, Christianne Elisabete da Costa, Delatore, Fabio, Zemp, Roger Josef, Ravagnani, Sergio Persio |
Publisher | [s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia Química, Programa de Pós-Graduação em Engenharia Química |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 108 p. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds