Return to search

Heat Transfer Characterization in Jet Flames Impinging on Flat Plates

The experimental work involves calculation of radial distribution of heat transfer coefficient at the surface of a flat Aluminium plate being impinged by a turbulent flame jet. Heat transfer coefficient distribution at the surface is computed from the measured heat flux and temperature data using a reference method and a slope method. The heat transfer coefficient (h) has a nearly bell shaped radial distribution at the plate surface for H/d =3.3. The value of h drops by 37 % from r/d =0 to r/d= 2. Upon increasing the axial distance to H/d = 5, the stagnation point h decreased by 15%. Adiabatic surface temperature (AST) distribution at the plate surface was computed from the measured heat flux and temperature. AST values were found to be lower than the measured gas temperature values at the stagnation point. Radial distribution of gas temperature at the surface was estimated by least squares linear curve fitting through the convection dominated region of net heat flux data and was validated by experimental measurements with an aspirated thermocouple. For low axial distances (H/d =3.3), the gas temperature dropped by only 15 % from r/d = 0 to r/d = 2. Total heat flux distribution is separated into radiative and convective components with the use of calculated heat transfer coefficient and estimated gas temperatures. At H/d = 3.3, the radiation was found to be less than 25 % of the net heat flux for r/d ≤ 2. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/52985
Date21 June 2015
CreatorsVirk, Akashdeep Singh
ContributorsMechanical Engineering, Lattimer, Brian Y., Diller, Thomas E., Huxtable, Scott T.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.002 seconds