Return to search

Laboratory and theoretical investigations of direct and indirect microbial influences on seafloor gas hydrates

Bacillus subtilis capable of producing surfactin was cultured to evaluate effects of microbial cell mass on natural gas hydrate formation, dissociation, and stability characteristics. The direct molecular influences of microbial cell wall polymers inhibited gas hydrate formation significantly, decreased hydrate formation rates, and increased dissociation rates. Upon the introduction of bentonite, significant synergy was observed in the system in the form of a catalytic effect. Microbes cultured from seafloor seawater-saturated sediments collected from Mississippi Canyon 118 (MC-118) produced similar effects and generalized the observed trends. MC-118 cultures also produced biosurfactant in several culture media, which was shown to catalyze natural gas hydrate formation in porous media. Microorganisms inhabit gas hydrate macrostructures and consume hydrocarbons and other substrates from within. Sulfate reduction and anaerobic hydrocarbon oxidation occurred within gas hydrate during incubations with MC-118 indigenous consortia. A mathematical model was developed to explore the diffusion-reaction implications in massive seafloor gas hydrates.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3908
Date02 May 2009
CreatorsRadich, James Gregory
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0016 seconds