Hollow section members are widely used in industrial applications for the design of many machine and structural components. These components are often fabricated at lower cost by welding rather than by casting or forging. For instance, in agricultural machinery, the hollow tubes are typically connected together through welding to form T-joints. Such T-joint connections are also employed in other engineering applications such as construction machinery, offshore structures, bridges, and vehicle frames. In this dissertation, the behaviour of tubular T-joint connections, in particular square hollow section (SHS)-to-SHS T-joints, subjected to static and cyclic loads is studied both experimentally and numerically.
The techniques used for the fabrication of the T-joint connections can affect their strengths to different degrees. With modern advances in manufacturing technologies, there are many alternatives for the fabrication of the T-joint connections. For instance, in recent years, the use of the laser beam has become increasingly common in industrial applications. From a manufacturing point of view, the T-joint connections can be fabricated by using traditional mechanical cutting or laser cutting techniques. Currently, for the fabrication of the T-joint connections, the straight edge of one tube is cut using mechanical tools (e.g., flame cutting) and then welded to the body of the other tube. A major contribution of this research work is investigating the feasibility of using laser cutting to produce welded square hollow-section T-joints with similar or higher fatigue strengths than their conventional mechanical cut counterparts. For this purpose, a total of 21 full-scale T-joint samples, typical of those found in the agricultural machinery, are included for the study. Finite Element (FE) models of the T-joints manufactured with the different cutting techniques are also developed and the FE results are verified with the experiments. The results of the numerical and experimental study on the full-scale T-joint samples show that the fatigue strength of the samples that are manufactured with laser cutting is higher than those fabricated with conventional mechanical cutting.
From a structural analysis view point, despite of the wide use of tubular T-joint connections as efficient load carrying members, a practical but yet simple and accurate approach for their design and analysis is not available. For this purpose, engineers must often prepare relatively complicated and time consuming FE models made up of shell or solid elements. This is because unlike solid-section members, when hollow section members are subjected to general loadings, they may experience severe deformations of their cross-sections that results in stress concentrations in the connections vicinity. One of the objectives/contributions of this research work is the better understanding of the behaviour of SHS-to-SHS T-joint connections under in-plane bending (IPB) and out-of-plane bending (OPB) loading conditions. Through a detailed Finite Element Analysis (FEA) using shell and solid elements, the stiffness and stress distribution at the connection of the tubular T-joints are obtained for different loading conditions. It is observed that at a short distance away from the connection of the T-joints, the structure behaves similar to beams when subjected to loadings. The beam like stresses cease to be valid only in the vicinity of the connection. Therefore, several parameters are defined to recognize the joints stress concentrations and the bending stiffness reduction. These parameters permit the accurate modelling of the tubes and the T-connection by simple beam elements with certain modifications. The models consisting of beam elements are significantly easier to prepare and analyze. Through several numerical examples, it is shown that the modified beam models provide accurately all important information of the structural analysis (i.e. the stresses, displacements, reaction forces, and the natural frequencies) at substantially reduced computational effort in comparison with the complicated Finite Element (FE) models built of shell or solid elements.
Another contribution of this research work is the FE modelling of the weld geometry and its effect on the stresses at the vicinity of the connection. The results of the FE modelling are verified through a detailed experimental study. For the experimental study, two test fixtures with hydraulic actuators capable of applying both static and cyclic loadings are designed and used. Strain gauges are installed at several locations on full-scale T-joint samples to validate the developed FE models. It is shown that the membrane stresses which occur at the mid-surface of the tubes remain similar regardless of the weld geometry. The weld geometry only affects the bending stresses. It is also shown that this effect on bending stresses is highly localized and disappears at a distance of about half of the weld thickness away from the weld-toe. To reduce the stress concentrations at the T-joint, plate reinforcements are used in a number of different arrangements and dimensions to increase the load carrying capacity of the connection.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-06282010-182509 |
Date | 02 July 2010 |
Creators | Moazed, Reza |
Contributors | Boulfiza, Mohamed, Oguocha, Ikechukwuka, Szyszkowski, Walerian, Fotouhi, Reza, Bugg, James, Varvani-Farahani, Ahmad |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-06282010-182509/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0024 seconds