From fundamental forms to curvatures and geodesics, differential geometry has many special theorems and applications worth examining. Among these, the Gauss-Bonnet Theorem is one of the well-known theorems in classical differential geometry. It links geometrical and topological properties of a surface. The thesis introduced some basic concepts in differential geometry, explained them with examples, analyzed the Gauss-Bonnet Theorem and presented the proof of the theorem in greater detail. The thesis also considered applications of the Gauss-Bonnet theorem to some special surfaces.
Identifer | oai:union.ndltd.org:csusb.edu/oai:scholarworks.lib.csusb.edu:etd-project-4080 |
Date | 01 January 2006 |
Creators | Broersma, Heather Ann |
Publisher | CSUSB ScholarWorks |
Source Sets | California State University San Bernardino |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses Digitization Project |
Page generated in 0.0017 seconds