This thesis deals with solutions of nonlinear regression problems using R programming language. The introductory theoretical part is devoted to familiarization with the principles of solving nonlinear regression models and of their applications in the program R. In both, theoretical and practical part, the most famous and used differentiator algorithms are presented, particularly the Gauss-Newton's and of the steepest descent method, for estimating the parameters of nonlinear regression. Further, in the practical part, there are some demo solutions of particular tasks using nonlinear regression methods. Overall, a large number of graphs processed by the author is used in this thesis for better comprehension.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:193088 |
Date | January 2015 |
Creators | Dolák, Martin |
Contributors | Malá, Ivana, Bašta, Milan |
Publisher | Vysoká škola ekonomická v Praze |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds