Return to search

GMMEDA : A demonstration of probabilistic modeling in continuous metaheuristic optimization using mixture models

Optimization problems are common throughout science, engineering and commerce. The desire to continually improve solutions and resolve larger, complex problems has given prominence to this field of research for several decades and has led to the development of a range of optimization algorithms for different class of problems. The Estimation of Distribution Algorithms (EDAs) are a relatively recent class of metaheuristic optimization algorithms based on using probabilistic modeling techniques to control the search process. Within the general EDA framework, a number of different probabilistic models have been previously proposed for both discrete and continuous optimization problems. This thesis focuses on GMMEDAs; continuous EDAs based on the Gaussian Mixture Models (GMM) with parameter estimation performed using the Expectation Maximization (EM) algorithm. To date, this type of model has only received limited attention in the literature. There are few previous experimental studies of the algorithms. Furthermore, a number of implementation details of Continuous Iterated Density Estimation Algorithm based on Gaussian Mixture Model have not been previously documented. This thesis intends to provide a clear description of the GMMEDAs, discuss the implementation decisions and details and provides experimental study to evaluate the performance of the algorithms. The effectiveness of the GMMEDAs with varying model complexity (structure of covariance matrices and number of components) was tested against five benchmark functions (Sphere, Rastrigin, Griewank, Ackley and Rosenbrock) with varying dimensionality (2−, 10− and 30−D). The effect of the selection pressure parameters is also studied in this experiment. The results of the 2D experiments show that a variant of the GMMEDA with moderate complexity (Diagonal GMMEDA) was able to optimize both unimodal and multimodal functions. Further, experimental analysis of the 10 and 30D functions optimized results indicates that the simpler variant of the GMMEDA (Spherical GMMEDA) was most effective of all three variants of the algorithm. However, a greater consistency in the results of these functions is achieved when the most complex variant of the algorithm (Full GMMEDA) is used. The comparison of the results for four artificial test functions - Sphere, Griewank, Ackley and Rosenbrock - showed that the GMMEDA variants optimized most of complex functions better than existing continuous EDAs. This was achieved because of the ability of the GMM components to model the functions effectively. The analysis of the results evaluated by variants of the GMMEDA showed that number of the components and the selection pressure does affect the optimum value of artificial test function. The convergence of the GMMEDA variants to the respective functions best local optimum has been caused more by the complexity in the GMM components. The complexity of GMMEDA because of the number of components increases as the complexity owing to the structure of the covariance matrices increase. However, while finding optimum value of complex functions the increased complexity in GMMEDA due to complex covariance structure overrides the complexity due to increase in number of components. Additionally, the affect on the convergence due to the number of components decreases for most functions when the selection pressure increased. These affects have been noticed in the results in the form of stability of the results related to the functions. Other factors that affect the convergence of the model to the local optima are the initialization of the GMM parameters, the number of the EM components, and the reset condition. The initialization of the GMM components, though not visible graphically in the 10D optimization has shown: for different initialization of the GMM parameters in 2D, the optimum value of the functions is affected. The initialization of the population in the Evolutionary Algorithms has shown to affect the convergence of the algorithm to the functions global optimum. The observation of similar affects due to initialization of GMM parameters on the optimization of the 2D functions indicates that the convergence of the GMM in the 10D could be affected, which in turn, could affect the optimum value of respective functions. The estimated values related to the covariance and mean over the EM iteration in the 2D indicated that some functions needed a greater number of EM iterations while finding their optimum value. This indicates that lesser number of EM iterations could affect the fitting of the components to the selected population in the 10D and the fitting can affect the effective modeling of functions with varying complexity. Finally, the reset condition has shown as resetting the covariance and the best fitness value of individual in each generation in 2D. This condition is certain to affect the convergence of the GMMEDA variants to the respective functions best local optimum. The rate at which the reset condition was invoked could certainly have caused the GMM components covariance values to reset to their initials values and thus the model fitting the percentage of the selected population could have been affected. Considering all the affects caused by the different factors, the results indicates that a smaller number of the components and percentage of the selected population with a simpler S-GMMEDA modeled most functions with a varying complexity.

Identiferoai:union.ndltd.org:ADTP/282068
CreatorsNaveen Kumar
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.0022 seconds