While many university students get introduced to the concept of statistics early in their education, random matrix theory (RMT) usually first arises (if at all) in graduate level classes. This thesis serves as a friendly introduction to RMT, which is the study of matrices with entries following some probability distribution. Fundamental results, such as Gaussian and Wishart ensembles, are introduced and a discussion of how their corresponding eigenvalues are distributed is presented. Two well-studied applications, namely neural networks and PCA, are discussed where we present how RMT can be applied / Medan många stöter på statistik och sannolikhetslära tidigt under sina universitetsstudier så är det sällan slumpmatristeori (RMT) dyker upp förän på forskarnivå. RMT handlar om att studera matriser där elementen följer någon sannolikhetsfördelning och den här uppsatsen presenterar den mest grundläggande teorin för slumpmatriser. Vi introducerar Gaussian ensembles, Wishart ensembles samt fördelningarna för dem tillhörande egenvärdena. Avslutningsvis så introducerar vi hur slumpmatriser kan användas i neruonnät och i PCA.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-171649 |
Date | January 2020 |
Creators | Andersson, Kasper |
Publisher | Linköpings universitet, Matematisk statistik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds