Human motion analysis (HMA) can play a crucial role in sports and healthcare by providing unique insights on movement mechanics in the form of objective measurements and quantitative data. Traditional, state of the art, marker-based techniques, despite their accuracy, come with financial and logistical barriers, and are restricted to laboratory settings. Markerless systems offer much improved affordability and portability, and can potentially be used outside of laboratories. However, these advantages come with a significant cost in accuracy. This thesis attempts to address the challenge of democratizing HMA by leveraging recent advances in smartphone technology and machine learning.\newline\newlineThis thesis evaluates two modalities of performing markerless HMA: Single smartphone using Apple Arkit, and multiple smartphone setup using OpenCap, and compares both to a state of the art multiple-camera marker-based system from Vicon. Additionally, this thesis presents and evaluates two approaches to improving the single smartphone modality: Employing a Gaussian Process Model (GPR), and a Long-short-term-memory (LSTM) neural network to refine the single smartphone data to align with the marker-based result. Specific movements were recorded simultaneously with all three modalities on 13 subjects to build a dataset. From this, GPR and LSTM models were trained and applied to refine the single camera modality data. Lower limb joint angles, and joint centers were evaluated across the different modalities, and analyzed for potential use in real-world applications. While the findings of this thesis are promising, as both the GPR and LSTM models improve the accuracy of Apple Arkit, and OpenCap providing accurate and consistent results. It is important to acknowledge limitations regarding demographic diversity and how real-world environmental factors may influence its application. This thesis contributes to the efforts in narrowing the gap between marker-based HMA methods, and more accessible solutions. / Rörelseanalys av människokroppen (HMA) kan spela en betydelsefull roll i både idrott och hälso- och sjukvården. Genom objektiv och kvantitativ data ger den unik insikt i mekaniken bakom rörelser. Traditionella, toppmoderna, markör-baserade tekniker är mycket precisa, men medför finansiella och logistikbaserade barriärer, och finns endast tillgängliga i laboratorier. Markör-fria system erbjuder mycket bättre pris, portabilitet och kan potentiellt användas utanför laboratorier. Dessa fördelar går dock hand i hand med en betydande minskning av nogrannhet. Denna avhandling försöker ta itu med utmaningen att demokratisera HMA genom att utnyttja de senaste framstegen inom smartphoneteknik och maskininlärning. Denna avhandling utvärderar två sätt att utföra markör-fri HMA: Genom att använda en smartphone som kör Apple Arkit, och en uppsättning med flera smartphones som kör OpenCap. Båda modaliteter jämförs med ett markör-baserat system som använder flera kameror, från Vicon. Dessutom presenteras och utvärderas två metoder för att förbättra modaliteten med endast en smartphone: Användning av en Gaussisk Process modell för Regression (GPR) och ett Long-short-term-memory (LSTM) neuronnät för att förbättra data från en smartphone modalititeten, så att det bättre överenstämmer med det markör-baserade resultatet. Specifika rörelser spelades in samtidigt med alla tre modaliteter på 13 försökspersoner för att bygga upp ett dataset. Utifrån detta tränades GPR- och LSTM-modeller och användas för att förbättra data från en kamera modaliteten (Apple Arkit). Ledvinklar och ledcentra för de nedre extremiteterna utvärderades i de olika modaliteterna och analyserades för potentiell använding i verkliga tillämpningar. Även om resultaten av denna avhandling är lovande, då både GPR- och LSTM-modellerna förbättrar nogrannheten hos Apple Arkit, och OpenCap ger korrekta och konsekventa resultat, så är det viktigt att erkänna begränsningarna när det gäller demografisk mångfald och hur miljöfaktorer i verkligheten kan påverka tillämpningen.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-347745 |
Date | January 2024 |
Creators | Brink, Anton |
Publisher | KTH, Skolan för kemi, bioteknologi och hälsa (CBH) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2024:101 |
Page generated in 0.0034 seconds