L'émergence d'une une nouvelle classe de matériaux, des isolants topologiques, a stimulé un vaste champ de recherche. Bismuth, un élément du groupe V du tableau périodique, est un des ingrédients clé d'une famille d'isolants topologiques. Pour des applications dans la technologie des composants électroniques, il est essentiel de maîtriser la préparation des matériaux en couches minces. Dans ce travail de thèse, nous avons étudié la croissance et la structure électronique de bismuth sur les surfaces (100) et (111) de semi-conducteur III-V InAs.Déposition de Bi sur la surface InAs(100) résulte en une auto-organisation de Bi qui forme des lignes de taille atomique. On montre que le bismuth interagit extrêmement faiblement avec la surface car la structure d'origine de la surface propre de l'InA(100) reste intacte. L'étude de la bande valence montre la présence d'états résonants fortement dépendants de l'énergie de photons et de la polarisation de la lumière, en cohérence avec la structure quasi unidimensionnelle de la surface.La spécificité de la surface InAs(111) est qu'elle a deux terminaisons différentes: par In, (face A) et par As, (face B). Les deux faces présentent des reconstructions différentes. Par la photoémission des niveaux de coeur nous avons montré une différence de réactivité chimique entre les faces A et B. La croissance de Bi sur la face A résulte en un monocristal de haute qualité pour les films à partir de 10 monocouches. Par contre, lors du dépôt de premières couches, la face B montre une croissance en îlots et un bon monocristal est obtenu seulement pour des films d'au moins de 50 monocouches.Pour la même face, A ou B, nous avons observé des différences de croissance plus subtiles entre les surfaces préparées soit par le bombardement ionique et des recuits soit par l'épitaxie par jets moléculaires.La photoémission résolue en angle a permit de caractériser la dispersion des bandes dans les films de Bi. La dispersion est tout à fait comparable au cristal massif de Bi. La dernière étape consistait à étudier la structure électronique d'un monocristal de Sb déposé sur le film de Bi.Les surfaces propres de InAs(111)A et InAs(111)B présentent une courbure de bande qui résulte en formation d'une couche d'accumulation d'électrons. En déposant le Bi sur ces surfaces, la couche d'accumulation est préservée, elle est même amplifié, car Bi agit comme le donneur dans l'InAs.La couche d'accumulation se traduit par un confinement quantique des électrons, mesurable par la photoémission résolue en angle.Mots clés :Structure électronique de surface, ARPES, semimétal, courbure de bande, Gaz-2D, Bismuth, Sb, InAs(111)A, InAs(111)B, puits quantique, surface Fermi, couches minces. / A new class of material is coming up, Topological Insulators, have opened a wide field of research. Bismuth, an element of group V of periodic table, is one of the key ingredient of this Topological Insulators family. With the aim of improving technological applications, especially the electronic compounds, it is of most importance to control the preparation of thin films materials. Within this Phd work, we studied the growth and Bismuth electronic structure on (100) and (111) semiconductor III-V InAs surfaces.Bi deposition on InAs(100) surface result of a Bi self-assembly which forms lines at atomic scale. We show Bi interact extremely weakly with the surface because the beginning structure of clean InAs(100) surface stay unharmed. The study of valence band sheds light on the existence of resonant states strongly photon energy dependent and also depend on the light polarization, consistent with almost one dimensional structure surface.InAs(111) surface specific feature is that it has both surface ending different : In ending, (face A) and As ending, (face B). The both faces pointed out distinguishable reconstructions. By the core-level photoemission we identified a chemical reactivity difference taking place between A and B faces. Bi growth on A-face tend to be a high quality monocrystal for those films from a thickness of 10 monolayers. On the other hand, during the deposition of first layers, the B-face show an island growth and a good monocrystal is obtained only available for films with 50 monolayers at least.For the same face, A or B, we have seen some growth discrepancies more subtle between prepared surfaces either by ionic bombardment and annealing (IBA) either by molecular beam epitaxy (MBE).The angular resolved photoemission allowed to identify the band dispersion inside of this Bi films. The dispersion is absolutely relative to the bulk Bi crystal. The final step involved the study of Sb monocrystal electronic structure deposited onto Bi film.Clean InAs(111)A and InAs(111)B surfaces indicate a band bending which result in the accumulation electron charge formation. With depositing Bi onto these surfaces, the accumulation layer would be kept, it is also increased, given that Bi acts as a donor-like in InAs. The accumulation layer is characterized by an electron quantum confinement, measurable by angle resolved photoemission.Keywords:Electronic structure surface, ARPES, semimetal, band bending effect, 2DEG, Bismuth, Sb, InAs(111)A, InAs(111)B, quatum wells, Fermi surface, thin films.
Identifer | oai:union.ndltd.org:theses.fr/2015CERG0760 |
Date | 11 December 2015 |
Creators | Djukic, Uros |
Contributors | Cergy-Pontoise, Hricovini, Karol |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds