Gaze tracking is the estimation of the point in space a person is “looking at”. This is widely used in both diagnostic and interactive applications, such as visual attention studies and human-computer interaction. The most common commercial solution used to track gaze today uses a combination of infrared illumination and one or more cameras. These commercial solutions are reliable and accurate, but often expensive. The aim of this thesis is to construct a simple single-camera gaze tracker from off-the-shelf components. The method used for gaze tracking is based on infrared illumination and a schematic model of the human eye. Based on images of reflections of specific light sources in the surfaces of the eye the user’s gaze point will be estimated. Evaluation is also performed on both the software and hardware components separately, and on the system as a whole. Accuracy is measured in spatial and angular deviation and the result is an average accuracy of approximately one degree on synthetic data and 0.24 to 1.5 degrees on real images at a range of 600 mm.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-17398 |
Date | January 2009 |
Creators | Wallenberg, Marcus |
Publisher | Linköpings universitet, Bildbehandling, Linköpings universitet, Tekniska högskolan |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds