Les méthodes de simulation Monte-Carlo s’étendent avec succès à différents domaines de la physique médicale mais aussi à différentes échelles, par exemple de la planification des traitements de radiothérapie jusqu’à une prévision des effets des rayonnements au niveau des cellules cancéreuses. La plateforme de simulation Monte-Carlo GATE, basée sur l’outil Geant4, propose des fonctionnalités dédiées aux simulations en physique médicale (médecine nucléaire et radiothérapie). Pour les applications en radiobiologie, les modèles physiques Geant4-DNA implémentés jusqu’à très basse énergie (eV) permettent d’estimer des quantités micro-dosimétriques d’intérêt. Dans le but d’implémenter une plateforme de simulation Monte-Carlo multi-échelles, nous nous sommes d’abord intéressés à la validation des modèles physiques de Geant4-DNA, puis à leur intégration dans la plateforme de simulation GATE et enfin à une validation de cette implémentation dans un contexte de radiothérapie et protonthérapie. De manière à valider les modèles physiques de Geant4-DNA, des points kernels de dose en électrons mono-énergétiques (de 10 keV à 100 keV) ont été simulés en utilisant les modèles physiques de Geant4 et de Geant4-DNA et ils ont comparés au code Monte-Carlo EGSnrc. Les parcours et pouvoirs d’arrêts des électrons (de 7,4 eV à 1 MeV) et des protons (de 1 keV à 100 MeV) calculés avec Geant4-DNA (processus et modèles préalablement intégrés dans GATE) ont ensuite été validés. Nous avons alors proposé de simuler avec la plateforme GATE l’impact de faisceaux cliniques et pré-cliniques sur l’ADN cellulaire. Nous avons ainsi modélisé un faisceau de protonthérapie de 193,1 MeV, un accélérateur linéaire en mode électrons de 6 MeV et un irradiateur RX de 250 kV. Ces simulations ont d’abord été validées en milieu aqueux par une comparaison de la dose macroscopique avec des mesures expérimentales. Les faisceaux ont ensuite été utilisés pour calculer, pour chacun d’entre eux, les fréquences de dépôts d’énergie à l’ADN. La molécule d’ADN a été simulée tout d’abord grâce à des cylindres équivalents en dimension à 10 paires de base (2 nm x 2 nm), équivalents à la taille d’un nucléosome (10 nm x 5 nm) et équivalents à la taille d’une fibre de chromatine (25 nm x 25 nm). Tous ces cylindres ont été placés aléatoirement dans un volume d’eau liquide (de rayon 500 nm). Nous avons ensuite reconstruit la molécule d’ADN dans Geant4 à partir de la lecture de fichiers PDB (Protein Data Bank) représentant douze paires de base de la molécule d’ADN et un dinucléosome (347 paires de base). Enfin, nous avons développé un outil permettant de corréler les positions de dépôts d’énergie directs dans l’eau liquide avec les coordonnées des paires de base de l’ADN, afin de calculer les nombres de cassures simple et double brin de l’ADN. Tous les calculs réalisés au cours de ce travail, ont été déployés sur l’Infrastructure de Grille Européenne ; des tests de performance sont proposés pour mesurer l’intérêt de ce type d’architecture pour les calculs Monte-Carlo. / The Monte Carlo simulation methods are successfully being used in various areas of medical physics but also at different scales, for example, from the radiation therapy treatment planning systems to the prediction of the effects of radiation in cancer cells. The Monte Carlo simulation platform GATE based on the Geant4 toolkit offers features dedicated to simulations in medical physics (nuclear medicine and radiotherapy). For radiobiology applications, the Geant4-DNA physical models are implemented to track particles till very low energy (eV) and are adapted for estimation of micro-dosimetric quantities. In order to implement a multi-scale Monte Carlo platform, we first validated the physical models of Geant4-DNA, and integrated them into GATE. Finally, we validated this implementation in the context of radiation therapy and proton therapy. In order to validate the Geant4-DNA physical models, dose point kernels for monoenergetic electrons (10 keV to 100 keV) were simulated using the physical models of Geant4-DNA and were compared to those simulated with Geant4 Standard physical models and another Monte Carlo code EGSnrc. The range and the stopping powers of electrons (7.4 eV to 1 MeV) and protons (1 keV to 100 MeV) calculated with GATE/Geant4-DNA were then compared with literature. We proposed to simulate with the GATE platform the impact of clinical and preclinical beams on cellular DNA. We modeled a clinical proton beam of 193.1 MeV, 6 MeV clinical electron beam and a X-ray irradiator beam. The beams models were validated by comparing absorbed dose computed and measured in liquid water. Then, the beams were used to calculate the frequency of energy deposits in DNA represented by different geometries. First, the DNA molecule was represented by small cylinders : 2 nm x 2 nm ( 10 bp), 5 nm x 10 nm ( nucleosome) and 25 nm x 25 nm ( chromatin fiber). All these cylinders were placed randomly in a sphere of liquid water (500 nm radius). Then we reconstructed the DNA molecule in Geant4 by reading PDB (Protein Data Bank) files representing twelve base pairs of the DNA molecule and a dinucleosome (347 base pairs). Finally, we developed a tool to correlate the positions of direct energy deposit in liquid water with the coordinates of the base pairs of DNA to calculate the number of single and double strand breaks in DNA. All calculations in this work were perfomed on the European Grid Infrastructure; performance tests are available to estimate the utility of this type of architecture for Monte Carlo calculations.
Identifer | oai:union.ndltd.org:theses.fr/2014CLF22456 |
Date | 21 May 2014 |
Creators | Pham, Quang Trung |
Contributors | Clermont-Ferrand 2, Incerti, Sébastien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds