This thesis focuses on the torsional-lateral interactions seen in gear coupled rotors. Of
particular interest are cases where the torsional stiffness parameters affect the lateral
critical speeds and where lateral stiffness and damping parameters affect torsional
critical speeds and amplitudes. A common procedure for critical speed calculations has
been to solve lateral and torsional systems separately. This procedure is tested through
an eigenvalue analysis. It is shown in this thesis, however, that torsional-lateral
interactions play major roles in each other's critical speeds. Some research has
seemingly uncoupled two lateral degrees of freedom from the gear system by choosing
bearing forces and a coordinate system pointing along the line of action and normal to
the line of action. This simplification method has been tested for cases when the lateral
bearing stiffness becomes asymmetric. The force generated by a rotating imbalance also
creates a variable moment arm as the center of mass rotates about the geometric center
of the gear. This variable moment arm is commonly neglected, but is included in the last
case study and its effects are displayed in the results section of this thesis.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/4727 |
Date | 25 April 2007 |
Creators | Emery, Michael Aaron |
Contributors | Vance, John M. |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | 2391284 bytes, electronic, application/pdf, born digital |
Page generated in 0.0018 seconds