Abstract
Collagen molecules consist of three polypeptide chains that are coiled around each other to form a triple-helical structure. The formation of stable collagen triple helices requires the hydroxylation of proline residues catalyzed by collagen prolyl 4-hydroxylases (C-P4H). Vertebrate C-P4H is an ER-resident enzyme that consists of two catalytically active α subunits and two β subunits. Production of recombinant human collagen and gelatin could have numerous medical and industrial applications, but most recombinant systems lack the C-P4H activity. The yeast Pichia pastoris has been successfully engineered to produce stable human collagens and gelatins by co-expression of the collagen polypeptide chains with the two C-P4H subunits.
This study examined the effect of deletion of the C-propeptide, or its replacement by a trimerizing foldon domain, on the assembly of type I and III collagen triple helices in P. pastoris. It was observed that the absence of the C-propeptide leads to inefficient collagen chain assembly whereas the replacement of C-propeptide with a foldon domain increased the assembly up to 3-fold. Moreover, the co-expression of α1(I) and α2(I) chains fused with foldon yielded heterotrimeric type I collagen molecules with a typical chain ratio of 2:1. As the foldon domain contains no information for collagen chain recognition, the present data indicate that the chain assembly is defined not only by the C-propeptides but also by other determinants present in the α chains.
Another aspect studied here was the expression and secretion of gelatin fragments of varying size and conformation in P. pastoris. It was discovered that gelatin fragment size affects its secretion as the 90 kDa fragment was less efficiently secreted than the 45 kDa fragment. Secretion was also dependent on the fragment conformation as induction of the triple helix formation by either C-propeptide or foldon led to the accumulation of the fragments inside the yeast cells despite the presence of an efficient secretory signal.
C-P4H was long assumed to exist as one type only but the cloning of several C-P4H α subunits raised questions concerning the specific roles of the C-P4H isoenzymes. The generation of mice lacking the type I C-P4H, which is regarded as the major C-P4H isoenzyme, indicated that this isoenzyme is essential for the embryonic development of the mouse. The embryos lacking type I C-P4H died at an early stage of their development due to the disruption of basement membranes. It was found that the basement membranes of the homozygous null embryos lacked type IV collagen whereas the fibrillar collagens were synthesized, although with altered morphology. The data reported here also demonstrate that the other C-P4H isoenzymes cannot compensate for the lack of type I isoenzyme.
Identifer | oai:union.ndltd.org:oulo.fi/oai:oulu.fi:isbn951-42-8104-7 |
Date | 23 May 2006 |
Creators | Pakkanen, O. (Outi) |
Publisher | University of Oulu |
Source Sets | University of Oulu |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess, © University of Oulu, 2006 |
Relation | info:eu-repo/semantics/altIdentifier/pissn/0355-3221, info:eu-repo/semantics/altIdentifier/eissn/1796-2234 |
Page generated in 0.0014 seconds