Return to search

A neural modelling approach to investigating general intelligence

One of the most well-respected and widely used tools in the study of general intelligence is the Raven's Progressive Matrices test, a nonverbal task wherein subjects must induce the rules that govern the patterns in an arrangement of shapes and figures. This thesis describes the first neurally based, biologically plausible model that can dynamically generate the rules needed to solve Raven's matrices. We demonstrate the success and generality of the rules generated by the model, as well as interesting insights the model provides into the causes of individual differences, at both a low (neural capacity) and high (subject strategy) level. Throughout this discussion we place our research within the broader context of intelligence research, seeking to understand how the investigation and modelling of Raven's Progressive Matrices can contribute to our understanding of general intelligence.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/5330
Date January 2010
CreatorsRasmussen, Daniel
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0017 seconds